. 24/7 Space News .
TECH SPACE
A new technique to synthesize superconducting materials
by Staff Writers
Rochester NY (SPX) Apr 01, 2021

This illustration from the Dias lab shows hydrogen molecules, at top, diffusing into a thin layer of palladium (purple), where they are separated into individual atoms, which then are distributed in an underlying layer of yttrium.

University of Rochester researchers who demonstrated superconducting materials at room temperatures last fall, now report a new technique in the quest to also create the materials at lower pressures.

In a paper published in Physical Review Letters, the lab of Ranga Dias, assistant professor of mechanical engineering and of physics and astronomy, describes separating hydrogen atoms from yttrium with a thin film of palladium.

"This is a completely new technique that nobody has used before for high pressure superhydride synthesis," Dias says.

Hydrogen rich materials are critical in the quest for room temperature superconductors because "you want stronger bonds and light elements. Those are the two very basic criteria," Dias says. "Hydrogen is the lightest material, and the hydrogen bond is one of the strongest."

Palladium is known to be a very good catalyst for "breaking down hydrogen molecules and diffusing them into whatever material you want to study," Dias says. In this case, a tiny layer of palladium protects the yttrium, a reactive transition metal, from oxidizing, but at same time, breaks down the hydrogen into individual atoms, which are then transported into the yttrium.

This is done inside a diamond anvil, which is used to compress the materials.

The resulting yttrium superhydride is superconducting at 12 degrees Fahrenheit and about 26 million pounds per square inch, still too high for practical applications. But it is a significant improvement over the room temperature materials the researchers reported last fall in Nature.

In that paper, the researchers reporting combining hydrogen with carbon and sulfur, which was superconducting at about 36 million pounds per square inch. (Pressure at sea level is about 15 psi.) "We will continue to use this new method to synthesize new superconducting materials at ambient pressure," Dias says.

The researchers used raman spectroscopy, which they believe is more effective than the X-ray diffraction techniques that are traditionally used to measure the behavior of hydrogen atoms.

To validate that, the researchers collaborated with Eva Zurek, professor of chemistry at the State University at Buffalo, who prepared theoretical simulations of how the hydrogen atoms could be expected to behave when transported into the yttrium. Those simulations were in "good agreement" with the lab's experimental data, Dias says.

Other coauthors on the paper include lead author Elliot Snider '19 (MS), Nathan Dasenbrock-Gammon '18 (MA), Raymond McBride '20 (MS), and Noah Meyers, all of the Dias lab; Xiaoyu Wang of the State University at Buffalo; and Keith Lawlor and Ashkan Salamat of the University of Nevada Las Vegas.

First discovered in 1911, superconductivity gives materials two key properties. Electrical resistance vanishes. And any semblance of a magnetic field is expelled, due to a phenomenon called the Meissner effect. The magnetic field lines have to pass around the superconducting material, making it possible to levitate such materials, something that could be used for frictionless high-speed trains, known as maglev trains.

Superconducting materials could also have applications in medical imaging and scanning techniques such as MRI and magnetocardiography; faster, more efficient electronics for digital logic and memory device technology.

Research paper


Related Links
University Of Rochester
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Tires turned into graphene that makes stronger concrete
Houston TX (SPX) Mar 30, 2021
This could be where the rubber truly hits the road. Rice University scientists have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. The environmental benefits of adding graphene to concrete are clear, chemist James Tour said. "Concrete is the most-produced material in the world, and simply making it produces as much as 9% of the world's carbon dioxide emissions," Tour said. "If we can use less concrete in our roads, buil ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Virgin Galactic and Land Rover announce global partnership extension as new spaceship is revealed

Russian Progress MS-14 spacecraft sets new flight duration record

NASA Engineers Analyze Navigation Needs of Artemis Moon Missions

Keeping track of spacecraft as Earth's water alters its spin

TECH SPACE
SpaceX introduces final members of all-civilian Inspiration4 crew

SpaceX Starship rocket explodes again after test flight

SpaceX Starship test flight fails

SpaceX aims to nail landing of Starship on fourth attempt

TECH SPACE
Researchers discover new type of ancient crater lake on Mars

NASA's Curiosity Mars rover takes selfie with Mont Mercou

Wright brothers' wing fragment to take flight again on Mars

NASA Ingenuity Mars Helicopter prepares for first flight

TECH SPACE
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

TECH SPACE
Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

OneWeb welcomes TrustComm as a DoD Distribution Partner

NASA Provides $45M Boost to US Small Businesses

TECH SPACE
A new technique to synthesize superconducting materials

Hitachi buys US software firm GlobalLogic for $9.6 bn

NASA tests mixed reality for mission operations for exploration

Tires turned into graphene that makes stronger concrete

TECH SPACE
How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Photosynthesis could be as old as life itself

Pandora Mission Would Expand NASA's Capabilities in Probing Alien Worlds

ASU scientists determine origin of strange interstellar object

TECH SPACE
SwRI scientists discover a new auroral feature on Jupiter

The PI's Perspective: Far From Home

SwRI scientists help identify the first stratospheric winds measured on Jupiter

Jupiter's Great Red Spot feeds on smaller storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.