. 24/7 Space News .
CHIP TECH
When semiconductors stick together, materials go quantum
by Staff Writers
Berkeley CA (SPX) Mar 11, 2019

The twist angle formed between atomically thin layers of tungsten disulfide and tungsten diselenide acts as a "tuning knob," turning ordinary semiconductors into an exotic quantum material.

A team of researchers led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a simple method that could turn ordinary semiconducting materials into quantum machines - superthin devices marked by extraordinary electronic behavior. Such an advancement could help to revolutionize a number of industries aiming for energy-efficient electronic systems - and provide a platform for exotic new physics.

The study describing the method, which stacks together 2D layers of tungsten disulfide and tungsten diselenide to create an intricately patterned material, or superlattice, was published online recently in the journal Nature.

"This is an amazing discovery because we didn't think of these semiconducting materials as strongly interacting," said Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division and professor of physics at UC Berkeley. "Now this work has brought these seemingly ordinary semiconductors into the quantum materials space."

Two-dimensional (2D) materials, which are just one atom thick, are like nanosized building blocks that can be stacked arbitrarily to form tiny devices. When the lattices of two 2D materials are similar and well-aligned, a repeating pattern called a moire superlattice can form.

For the past decade, researchers have been studying ways to combine different 2D materials, often starting with graphene - a material known for its ability to efficiently conduct heat and electricity. Out of this body of work, other researchers had discovered that moire superlattices formed with graphene exhibit exotic physics such as superconductivity when the layers are aligned at just the right angle.

The new study, led by Wang, used 2D samples of semiconducting materials - tungsten disulfide and tungsten diselenide - to show that the twist angle between layers provides a "tuning knob" to turn a 2D semiconducting system into an exotic quantum material with highly interacting electrons.

Entering a new realm of physics
Co-lead authors Chenhao Jin, a postdoctoral scholar, and Emma Regan, a graduate student researcher, both of whom work under Wang in the Ultrafast Nano-Optics Group at UC Berkeley, fabricated the tungsten disulfide and tungsten diselenide samples using a polymer-based technique to pick up and transfer flakes of the materials, each measuring just tens of microns in diameter, into a stack.

They had fabricated similar samples of the materials for a previous study, but with the two layers stacked at no particular angle. When they measured the optical absorption of a new tungsten disulfide and tungsten diselenide sample for the current study, they were taken completely by surprise.

The absorption of visible light in a tungsten disulfide/tungsten diselenide device is largest when the light has the same energy as the system's exciton, a quasiparticle that consists of an electron bound to a hole that is common in 2D semiconductors. (In physics, a hole is a currently vacant state that an electron could occupy.)

For light in the energy range that the researchers were considering, they expected to see one peak in the signal that corresponded to the energy of an exciton.

Instead, they found that the original peak that they expected to see had split into three different peaks representing three distinct exciton states.

What could have increased the number of exciton states in the tungsten disulfide/tungsten device from one to three? Was it the addition of a moire superlattice?

To find out, their collaborators Aiming Yan and Alex Zettl used a transmission electron microscope (TEM) at Berkeley Lab's Molecular Foundry, a nanoscale science research facility, to take atomic-resolution images of the tungsten disulfide/tungsten diselenide device to check how the materials' lattices were aligned.

The TEM images confirmed what they had suspected all along: the materials had indeed formed a moire superlattice. "We saw beautiful, repeating patterns over the entire sample," said Regan. "After comparing this experimental observation with a theoretical model, we found that the moire pattern introduces a large potential energy periodically over the device and could therefore introduce exotic quantum phenomena."

The researchers next plan to measure how this new quantum system could be applied to optoelectronics, which relates to the use of light in electronics; valleytronics, a field that could extend the limits of Moore's law by miniaturizing electronic components; and superconductivity, which would allow electrons to flow in devices with virtually no resistance.

Research paper


Related Links
Lawrence Berkeley National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Two dimensional 'Lego' shows new methods for creating electronics
Manchester UK (SPX) Mar 11, 2019
Physicists from The University of Manchester and The University of Sheffield have discovered that when two atomically thin (two-dimensional) materials like graphene are placed on top of each other like a 'Lego' tower, their properties change and a material with novel hybrid properties emerges, paving the way for design of new materials and nano devices. This happens without the two atomic layers physically meeting, nor through a chemical reaction, but by attaching the layers to each other via a we ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Astronauts who survived Soyuz scare ready for new launch despite glitches

Launch vehicle with Soyuz MS-12 CTS is on the launch pad

Out of This World Auction Sponsored by ARISS

ISS Multilateral Coordination Board Joint Statement

CHIP TECH
XQ-58A Valkyrie demonstrator completes inaugural flight

X-60A hypersonic flight research vehicle program completes critical design review

Illinois Native Uses Experience On Farm To Build Deep Space Rocket

SpaceX CEO Musk on Russia's Rocket Engineering, Engines: 'Excellent'

CHIP TECH
Opportunity's parting shot was a beautiful panorama

SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

CHIP TECH
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

CHIP TECH
Space workshops to power urban innovation

ESA helps firms large and small prosper in global satcom market

How ESA helps launch bright ideas and new careers

Next-generation space industry jobs ready for take-off

CHIP TECH
Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

Spontaneous spin polarization demonstrated in a two-dimensional material

Researchers turn liquid metal into a plasma

Nanotechnology and sunlight clear the way for better visibility

CHIP TECH
SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

K stars more likely to host habitable exoplanets

UK to tackle danger of solar wind and find new Earth-like planets

"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

CHIP TECH
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.