![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Mar 11, 2019
Researchers have developed a new imaging method that can capture images at speeds of up to 1.5 million frames per second using standard imaging sensors typically limited to 100 frames per second. This new technology will make it possible to capture extremely fast events for applications such as biomedical research or slow-motion scenes in a film. Researchers from the Institut National de la Recherche Scientifique (INRS) in Canada describe their new method, called compressed optical-streaking ultra-high-speed photography (COSUP), in The Optical Society (OSA) journal Optics Letters. They show the power of COSUP by using it to capture the transmission of a single laser pulse with a width of just 10 microseconds. "COSUP has a wide range of potential applications because it can be integrated into many imaging instruments from microscopes to telescopes," explained Jinyang Liang, an assistant professor at INRS and the corresponding author for the paper. "Using different CCD and CMOS cameras with COSUP also allows the method to be used for a wide range of wavelengths and for acquiring various optical characteristics such as polarization." The researchers say that the COSUP system might also be useful to the movie industry and sports videography, where high-speed cameras are used to capture detailed, quick movements for playback in slow motion. They are also working to miniaturize the system to allow high-quality slow-motion video capture with a smartphone.
Faster imaging "COSUP has specifications similar to existing high-speed cameras with an imaging speed that is tunable from tens of thousands of frames per second to 1.5 million frames per second," said Liang. "We used off-the-shelf components to create a very economical system." To perform COSUP, compressed sensing is used to spatially encode each temporal frame of a scene using a digital micromirror device, or DMD. This process labels the capture time of each frame much like a unique barcode. Then a scanner is used to perform temporal shearing, creating an optical streak image - a linear image from which the temporal properties of light can be inferred - that is captured with a traditional camera in a single shot. "Even though the streak image contains a mixture of 2D space and time information, we can separate the data using reconstruction because of the unique labels attached to each temporal frame," said Xianglei Liu, a doctoral student at INRS and the lead author of the paper. "This gives COSUP a 2D imaging field of view that can record hundreds of frames in each movie at 1.5 million frames per second and a resolution of 500 + 1000 pixels."
Capturing a single laser pulse In the second experiment, the researchers traced the position of a fast-moving ball pattern. Using COSUP at an imaging speed of 140,000 frames per second, they recorded the spatial position and the shape of the ball pattern over time. They also measured the centroid of the ball in each temporal frame and compared it with the known location, which showed that COSUP could accurately trace the ball's position. The researchers plan to use a COSUP system to measure the phosphorescence lifetimes of individual nanoparticles, which could be used to create an optical nanothermometer that would aid a light-based medical treatment known as photodynamic therapy. They are also working on using COSUP to improve the imaging of membrane voltage of neurons, which can help reveal the cellular mechanisms underlying brain functions. This type of imaging is challenging because the process is transient and nonrepeatable and the indicators used produce little light. "Using COSUP with highly sensitive cameras such as an electron-multiplying CCD would enable the real-time, fast imaging required for this application," said Liang. The researchers are also working to make the bench-top system compact enough to use outside and eventually for incorporation into smartphones. They have initiated an industrial collaboration with Axis Photonique to further develop COSUP toward a commercial product.
Research Report: "Single-shot Compressed Optical-Streaking Ultra-highspeed Photography"
![]() ![]() Breakthrough could enable cheaper infrared cameras Chicago IL (SPX) Mar 11, 2019 There's an entire world our eyes miss, hidden in the ranges of light wavelengths that human eyes can't see. But infrared cameras can pick up the secret light emitted as plants photosynthesize, as cool stars burn and batteries get hot. They can see through smoke and fog and plastic. But infrared cameras are much more expensive than visible-light ones; the energy of infrared light is smaller than visible light, making it harder to capture. A new breakthrough by scientists with the University of Chic ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |