. 24/7 Space News .
IRON AND ICE
Hubble watches spun-up asteroid coming apart
by Staff Writers
Greenbelt MD (SPX) Apr 08, 2019

Piecing together Gault's recent activity is an astronomical forensics investigation involving telescopes and astronomers around the world. All-sky surveys, ground-based telescopes, and space-based facilities like the Hubble Space Telescope pooled their efforts to make this discovery possible.

A small asteroid has been caught in the process of spinning so fast it's throwing off material, according to new data from NASA's Hubble Space Telescope and other observatories. Images from Hubble show two narrow, comet-like tails of dusty debris streaming from the asteroid (6478) Gault. Each tail represents an episode in which the asteroid gently shed its material - key evidence that Gault is beginning to come apart.

Discovered in 1988, the 2.5-mile-wide (4-kilometer-wide) asteroid has been observed repeatedly, but the debris tails are the first evidence of disintegration. Gault is located 214 million miles (344 million kilometers) from the Sun. Of the roughly 800,000 known asteroids between Mars and Jupiter, astronomers estimate that this type of event in the asteroid belt is rare, occurring roughly once a year.

Watching an asteroid become unglued gives astronomers the opportunity to study the makeup of these space rocks without sending a spacecraft to sample them.

"We didn't have to go to Gault," explained Olivier Hainaut of the European Southern Observatory in Germany, a member of the Gault observing team. "We just had to look at the image of the streamers, and we can see all of the dust grains well-sorted by size.

All the large grains (about the size of sand particles) are close to the object and the smallest grains (about the size of flour grains) are the farthest away because they are being pushed fastest by pressure from sunlight."

Gault is only the second asteroid whose disintegration has been strongly linked to a process known as a YORP effect. (YORP stands for "Yarkovsky-O'Keefe-Radzievskii-Paddack," the names of four scientists who contributed to the concept.) When sunlight heats an asteroid, infrared radiation escaping from its warmed surface carries off angular momentum as well as heat. This process creates a tiny torque that can cause the asteroid to continually spin faster.

When the resulting centrifugal force starts to overcome gravity, the asteroid's surface becomes unstable, and landslides may send dust and rubble drifting into space at a couple miles per hour, or the speed of a strolling human. The researchers estimate that Gault could have been slowly spinning up for more than 100 million years.

Piecing together Gault's recent activity is an astronomical forensics investigation involving telescopes and astronomers around the world. All-sky surveys, ground-based telescopes, and space-based facilities like the Hubble Space Telescope pooled their efforts to make this discovery possible.

The initial clue was the fortuitous detection of the first debris tail, observed on Jan. 5, 2019, by the NASA-funded Asteroid Terrestrial-Impact Last Alert System (ATLAS) telescope in Hawaii. The tail also turned up in archival data from December 2018 from ATLAS and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescopes in Hawaii.

In mid-January, a second shorter tail was spied by the Canada-France-Hawaii Telescope in Hawaii and the Isaac Newton Telescope in Spain, as well as by other observers. An analysis of both tails suggests the two dust events occurred around Oct. 28 and Dec. 30, 2018.

Follow-up observations with the William Herschel Telescope and ESA's (European Space Agency) Optical Ground Station in La Palma and Tenerife, Spain, and the Himalayan Chandra Telescope in India measured a two-hour rotation period for the object, close to the critical speed at which a loose "rubble-pile" asteroid begins to break up.

"Gault is the best 'smoking gun' example of a fast rotator right at the two-hour limit," said team member Jan Kleyna of the University of Hawaii in Honolulu.

An analysis of the asteroid's surrounding environment by Hubble revealed no signs of more widely distributed debris, which rules out the possibility of a collision with another asteroid causing the outbursts.

The asteroid's narrow streamers suggest that the dust was released in short bursts, lasting anywhere from a few hours to a few days. These sudden events puffed away enough debris to make a "dirt ball" approximately 500 feet (150 meters) across if compacted together. The tails will begin fading away in a few months as the dust disperses into interplanetary space.

Based on observations by the Canada-France-Hawaii Telescope, the astronomers estimate that the longer tail stretches over half a million miles (800,000 kilometers) and is roughly 3,000 miles (4,800 kilometers) wide. The shorter tail is about a quarter as long.

Only a couple of dozen active asteroids have been found so far. Astronomers may now have the capability to detect many more of them because of the enhanced survey capabilities of observatories such as Pan-STARRS and ATLAS, which scan the entire sky. "Asteroids such as Gault cannot escape detection anymore," Hainaut said. "That means that all these asteroids that start misbehaving get caught."

The researchers hope to monitor Gault for more dust events.

+ 6478 Gault at Hubble


Related Links
Goddard Space Flight Center
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
OSIRIS-REx Captures Laser 3D View of Bennu
Greenbelt MD (SPX) Apr 05, 2019
This three-dimensional view of asteroid Bennu was created by the OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency, on NASA's OSIRIS-REx spacecraft. From Feb. 12 through 17, OLA made more than 11 million measurements of the distance between OSIRIS-REx and Bennu's surface as the spacecraft flew less than 1.2 miles (2 km) above the surface - the closest orbit ever achieved by spacecraft. OLA obtained these measurements by firing laser pulses at Bennu and measuring the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
A decade-long quest to build an ecosystem in a room

Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

NASA selects two new space tech research institutes for smart habitats

IRON AND ICE
Russia Maintains High Quality of RD-180 Rocket Engines - ULA

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

IRON AND ICE
ExoMars carrier module prepares for final pre-launch testing

Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

IRON AND ICE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

IRON AND ICE
Preserving heritage data at ESA

Forging the future

Spacecraft Repo Operations

Amazon working on internet-serving satellite network

IRON AND ICE
Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

ESA oversees teaching of Europe's next top solderers

Russia's new ISS modules will be shielded with fabrics used in body armour

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms

IRON AND ICE
NASA researchers catalogue all microbes and fungi on ISS

Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

IRON AND ICE
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.