. 24/7 Space News .
ROBO SPACE
Helping hands guide robots as they learn
by Staff Writers
Houston TX (SPX) Dec 06, 2017


Rice University researchers led by graduate student Dylan Losey want to help humans and robots collaborate by enabling interactive tasks like rehabilitation, surgery and training programs in which environments are less predictable. In early studies, Losey and colleagues at the University of California, Berkeley, used gentle feedback to train a robot arm to manipulate a coffee cup in real time.

Like toddlers, robots can use a little help as they learn to function in the physical world. That's the purpose of a Rice University program that gently guides robots toward the most helpful, human-like ways to collaborate on tasks.

Rice engineer Marcia O'Malley and graduate student Dylan Losey have refined their method to train robots by applying gentle physical feedback to machines while they perform tasks. The goal is to simplify the training of robots expected to work efficiently side by side with humans.

A paper on their study appears in IEEE Explore.

"Historically, the role of robots was to take over the mundane tasks we don't want to do: manufacturing, assembly lines, welding, painting," said O'Malley, a professor of mechanical engineering, electrical and computer engineering and computer science. "As we become more willing to share personal information with technology, like the way my watch records how many steps I take, that technology moves into embodied hardware as well.

"Robots are already in our homes vacuuming or controlling our thermostats or mowing the lawn," she said. "There are all sorts of ways technology permeates our lives. I already talk to Alexa in the kitchen, so why not also have machines we can physically collaborate with? A lot of our work is about making human-robot interactions safe."

According to the researchers, robots adapted to respond to physical human-robot interaction (pHRI) traditionally treat such interactions as disturbances and resume their original behaviors when the interactions end. The Rice researchers have enhanced pHRI with a method that allows humans to physically adjust a robot's trajectory in real time.

At the heart of the program is the concept of impedance control, literally a way to manage what happens when push comes to shove. A robot that allows for impedance control through physical input adjusts its programmed trajectory to respond but returns to its initial trajectory when the input ends.

The Rice algorithm builds upon that concept as it allows the robot to adjust its path beyond the input and calculate a new route to its goal, something like a GPS system that recalculates the route to its destination when a driver misses a turn.

Losey spent much of last summer in the lab of Anca Dragan, an assistant professor of electrical engineering and computer sciences at the University of California, Berkeley, testing the theory. He and other students trained a robot arm and hand to deliver a coffee cup across a desktop, and then used enhanced pHRI to keep it away from a computer keyboard and low enough so that the cup wouldn't break if dropped. (A separate paper on the experiments appears in the Proceedings of Machine Learning Research.)

The goal was to deform the robot's programmed trajectory through physical interaction. "Here the robot has a plan, or desired trajectory, which describes how the robot thinks it should perform the task," Losey wrote in an essay about the Berkeley experiments. "We introduced a real-time algorithm that modified, or deformed, the robot's future desired trajectory."

In impedance mode, the robot consistently returned to its original trajectory after an interaction. In learning mode, the feedback altered not only the robot's state at the time of interaction but also how it proceeded to the goal, Losey said. If the user directed it to keep the cup from passing over the keyboard, for instance, it would continue to do so in the future. "By our replanning the robot's desired trajectory after each new observation, the robot was able to generate behavior that matches the human's preference," he said.

Further tests employed 10 Rice students who used the O'Malley lab's rehabilitative force-feedback robot, the OpenWrist, to manipulate a cursor around obstacles on a computer screen and land on a blue dot. The tests first used standard impedance control and then impedance control with physically interactive trajectory deformation, an analog of pHRI that allowed the students to train the device to learn new trajectories.

The results showed trials with trajectory deformation were physically easier and required significantly less interaction to achieve the goal. The experiments demonstrated that interactions can program otherwise-autonomous robots that have several degrees of freedom, in this case flexing an arm and rotating a wrist.

One current limitation is that pHRI cannot yet modify the amount of time it takes a robot to perform a task, but that is on the Rice team's agenda.

"The paradigm shift in this work is that instead of treating a human as a random disturbance, the robot should treat the human as a rational being who has a reason to interact and is trying to convey something important," Losey said. "The robot shouldn't just try to get out of the way. It should learn what's going on and do its job better."

Research paper

ROBO SPACE
Robot learning improves student engagement
East Lansing MI (SPX) Dec 05, 2017
The first-ever study of Michigan State University's pioneering robot-learning course shows that online students who use the innovative robots feel more engaged and connected to the instructor and students in the classroom. Stationed around the class, each robot has a mounted video screen controlled by the remote user that lets the student pan around the room to see and talk with the instru ... read more

Related Links
Rice University
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

ROBO SPACE
Russia to build launch pad for super heavy-lift carrier by 2028

Flat-Earther's self-launch plan hits a snag

Mechanisms are critical to all space vehicles

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

ROBO SPACE
Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Earthworms can reproduce in Mars-like soil

Gadgets for Mars

ROBO SPACE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

ROBO SPACE
Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Going green to the Red Planet

Need to double number of operational satellites: ISRO chief

ROBO SPACE
Borophene shines alone as 2-D plasmonic material

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

Study shows how to get sprayed metal coatings to stick

PPPL scientists deliver new high-resolution diagnostic to national laser facility

ROBO SPACE
Exoplanet Has Smothering Stratosphere Without Water

Mexico's Yucatan Peninsula reveals a cryptic methane-fueled ecosystem in flooded caves

Newly Discovered Twin Planets Could Solve Puffy Planet Mystery

Scientists identify key factors that help microbes thrive in harsh environments

ROBO SPACE
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.