. | . |
Mexico's Yucatan Peninsula reveals a cryptic methane-fueled ecosystem in flooded caves by Staff Writers Washington DC (SPX) Nov 29, 2017
In the underground rivers and flooded caves of Mexico's Yucatan Peninsula, where Mayan lore described a fantastical underworld, scientists have found a cryptic world in its own right. Here, methane and the bacteria that feed off it form the lynchpin of an ecosystem that is similar to what has been found in deep ocean cold seeps and some lakes, according to recent research by Texas A and M University at Galveston, the U.S. Geological Survey and a team of collaborators from Mexico, The Netherlands, Switzerland and other U.S. institutions. The research, conducted by scientists who are trained in cave diving in addition to their other expertise, is the most detailed ecological study ever for a coastal cave ecosystem that is always underwater. In fact, the scientists had to use techniques that had previously been used by deep-sea submergence vehicles to be able to study the environment. "The opportunity to work with an international team of experts has been a remarkable experience for me," said David Brankovits, who is the paper's lead author and conducted the research during his Ph.D. studies at TAMUG. "Finding that methane and other forms of mostly invisible dissolved organic matter are the foundation of the food web in these caves explains why cave-adapted animals are able to thrive in the water column in a habitat without visible evidence of food." The study was conducted in the Ox Bel Ha cave network of the northeastern Yucatan, which is described as a subterranean estuary because the flooded cave passages contain distinct water layers consisting of freshwater fed by rainfall and salt water from the coastal ocean. This subterranean estuary complex covers an area approximately the size of Galveston Bay, the seventh largest surface estuary in the United States. The freshwater portion of the caves and the sinkholes, which are used to access the caves and are referred to locally as cenotes, are important sources of freshwater for communities throughout the Yucatan. Methane in the caves forms naturally beneath the jungle floor and migrates downward, deeper into the water and caves. Normally, all of the methane formed in soils migrates upward, towards the atmosphere. This sets the stage for the bacteria and other microbes that form the basis for the cave ecosystem. The microbes eat both the methane in the water and other dissolved organic material that the freshwater brought with it from the surface. The microbes then fuel a food web that is dominated by crustaceans, including a cave-adapted shrimp species that obtains about 21 percent of its nutrition from methane. "The processes we are investigating in these stratified groundwater systems are analogous to what is happening in the global ocean, especially in oxygen minimum zones where deoxygenation is a growing concern," says John Pohlman, a coauthor of the study and a USGS biogeochemist whose work from the early 90s motivated the research. "Although accessing these systems requires specialized training and strict adherence to cave diving safety protocols, relative to the complexity of an oceanographic expedition, the field programs we organize are simple and economical." One surprising finding was how important the dissolved organic material like methane was to the caves' food web. Prior studies had assumed that the majority of organic material that feeds the microbes of caves came from vegetation and other detritus in the tropical forest that washed into the caves from the cenotes. However, deep within the caves, where the study was conducted, there is very little of that surface debris, so the microbes depend on methane and the other dissolved organics percolating downward through the ceiling of the caves. Tom Iliffe, a professor in the Marine Biology Department at TAMUG who has been studying the biodiversity, evolution and conservation of marine cave animals for nearly 40 years, remarks, "Providing a model for the basic function of this globally-distributed ecosystem is an important contribution to coastal groundwater ecology and establishes a baseline for evaluating how sea level rise, seaside touristic development and other stressors will impact the viability of these lightless, food-poor systems."
Edinburgh UK (SPX) Nov 21, 2017 Life on our planet might have originated from biological particles brought to Earth in streams of space dust, a study suggests. Fast-moving flows of interplanetary dust that continually bombard our planet's atmosphere could deliver tiny organisms from far-off worlds, or send Earth-based organisms to other planets, according to the research. The dust streams could collide with biologi ... read more Related Links US Geological Survey Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |