. 24/7 Space News .
EXO WORLDS
Scientists identify key factors that help microbes thrive in harsh environments
by Staff Writers
College Park MD (SPX) Nov 29, 2017


file image

Three new studies by University of Maryland School of Medicine (UMSOM) scientists have identified key factors that help microbes survive in harsh environments. The results, which have implications for biotechnology and understanding life in extreme conditions, were in the Proceedings of the National Academy Of Sciences (PNAS), Astrobiology, and the International Journal of Astrobiology.

"Our work capitalizes on the abundance of genomic and transcriptomic data. Genomic data represent road maps, and genetics, biochemistry, and microbiology are the vehicles for exploring and expanding knowledge," said the principal author on the studies, Shiladitya DasSarma, professor at the Institute of Marine and Environmental Technology in the UMSOM Department of Microbiology and Immunology

"Using this interdisciplinary approach in our series of recent papers, we have better defined the limits to life and the mechanisms that these hardy microbes and their proteins use to survive and function in cold, salty, and water-limited environments, such as exist on Mars. Our studies also have applications in green biotechnology here on Earth," added DasSarma.

The recent PNAS article builds on previous analysis by Prof. DasSarma and several colleagues, which identified key proteins in microbes found in extremely salty environments. They examined the amino acid composition of several of the microbe's proteins. The protein surfaces are negatively supercharged compared to all other organisms.

These proteins use the negative charges to tightly bind water molecules in order to stay in solution and combat the effects of high levels of salt and dryness. They focused on a microbe called H. lacusprofundi (Hla), from Deep Lake, a very salty lake in Antarctica.

They wanted to find out how proteins from the microbe function in the dual extremes of very salty, very cold environments. They found that certain amino acids were more prevalent in the microbe.

They focused on one enzyme, beta-galactosidase. They discovered key differences between versions of the enzyme in Hla and versions in microbes that live in temperate environments. Among the key differences: looser packing of atoms and greater flexibility in cold-functioning enzymes.

Another study, published in the journal Astrobiology, expands the study, by examining the role of enzymes in the microbe's ability to survive in the presence of toxic salts. This research has implications for decontamination of toxic environments, as well as life on other planets such as Mars, where these toxic salts, particularly one called magnesium perchlorate, have been identified on the surface.

The third study, published last month in the International Journal of Astrobiology, showed that Hla and other similarly hardy microbes can survive trips into the stratosphere, many miles above the Earth's surface, where conditions are similar to those on Mars. The stratosphere is extremely cold, has little oxygen and has high levels of damaging ultraviolet radiation.

These studies also have the potential to be useful for biotechnology. The approach in the PNAS study could be used for designing valuable enzymes that function at lower temperatures.

For example, modified beta-galactosidase can be used for making lactose-free milk in cold temperatures, and other enzymes can be tailored for other "green" industrial processes at reduced temperatures, thereby reducing the amount of energy required in the manufacturing process. Perchlorate is used in rocket fuel and fireworks and is a common toxic contaminant in some ground water. The work in Astrobiology could lead to a method for its removal.

EXO WORLDS
Space dust may transport life between worlds, research suggests
Edinburgh UK (SPX) Nov 21, 2017
Life on our planet might have originated from biological particles brought to Earth in streams of space dust, a study suggests. Fast-moving flows of interplanetary dust that continually bombard our planet's atmosphere could deliver tiny organisms from far-off worlds, or send Earth-based organisms to other planets, according to the research. The dust streams could collide with biologi ... read more

Related Links
University of Maryland School of Medicine
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Building for a future in space: An interview with Dava Newman and Gui Trotti

Space Farms: 'Mark Watney in The Martian Was Right to Add Poop to the Soil'

New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

EXO WORLDS
ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

EXO WORLDS
Earthworms can reproduce in Mars-like soil

Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Scientists developed a new sensor for future missions to the Moon and Mars

EXO WORLDS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

EXO WORLDS
Going green to the Red Planet

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

EXO WORLDS
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

EXO WORLDS
Scientists identify key factors that help microbes thrive in harsh environments

Exoplanet Has Smothering Stratosphere Without Water

Scientists study Earth's earliest life forms in Nevada hot spring

Traces of life on nearest exoplanets may be hidden in equatorial trap

EXO WORLDS
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.