. | . |
PPPL scientists deliver new high-resolution diagnostic to national laser facility by Staff Writers Plainsboro NJ (SPX) Nov 30, 2017
Scientists from the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have built and delivered a high-resolution X-ray spectrometer for the largest and most powerful laser facility in the world. The diagnostic, installed on the National Ignition Facility (NIF) at the DOE's Lawrence Livermore National Laboratory, will analyze and record data from high-energy density experiments created by firing NIF's 192 lasers at tiny pellets of fuel. Such experiments are relevant to projects that include the U.S. Stockpile Stewardship Program, which maintains the U.S. nuclear deterrent without full-scale testing, and to inertial confinement fusion, an alternative to the magnetic confinement fusion that PPPL studies. PPPL has used spectrometers for decades to analyze the electromagnetic spectrum of plasma, the hot fourth state of matter in which electrons have separated from atomic nuclei, inside doughnut-shaped fusion devices known as tokamaks. These devices heat the particles and confine them in magnetic fields, causing the nuclei to fuse and produce fusion energy. By contrast, NIF's high-powered lasers cause fusion by heating the exterior of the fuel pellet. As the exterior vaporizes, pressure extends inward towards the pellet's core, crushing hydrogen atoms together until they fuse and release their energy. NIF tested and confirmed that the spectrometer was operating as expected on September 28. During the experiment, the device accurately measured the electron temperature and density of a fuel capsule during the fusion process. "Measuring these conditions is key to achieving ignition of a self-sustaining fusion process on NIF," said PPPL physicist Lan Gao, who helped design and build the device. "Everything worked out very nicely. The signal level we got was just like what we predicted." The spectrometer will focus on a small capsule of simulated fuel that includes the element krypton to measure how the density and temperature of the hot electrons in the plasma change over time. "The fusion yield is very sensitive to temperature," said Marilyn Schneider, leader of NIF's Radiation Physics and Spectroscopic Diagnostics Group. "The spectrometer will provide the most sensitive temperature measurements to date. The device's ability to plot temperature against time will also be very helpful."
University Park PA (SPX) Nov 23, 2017 Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors grown in elaborate high vacuum systems. Now, a team of researchers from Penn State and Princeton University have taken a big step toward creating a diode laser from ... read more Related Links Princeton Plasma Physics Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |