. 24/7 Space News .
TECH SPACE
With great power comes great laser science
by Staff Writers
Vienna, Austria (SPX) Sep 15, 2016


Skirmantas Alisauskas.

It is a very unusual kind of laser: researchers at the photonics institute at TU Wien (Vienna) have built a device which emits ultrashort flashes of infrared light with extremely high energy.

"It is very hard to combine these three properties - long infrared wavelength, short duration and high energy", says Valentina Shumakova. "But this combination is exactly what we need for many interesting strong-field applications."

Now the team has achieved a major breakthrough: By sending very energetic pulses in the infrared regime through a solid medium, the pulses can be compressed in time and space. The energy stays roughly the same, but it can now be deposited in an even shorter period of time, resulting in an incredible peak power of up to half a terawatt.

This power corresponds to the output of hundreds of nuclear reactors. But unlike power plants, which produce the power steadily, the compressed laser pulse only lasts 30 femtoseconds (millionths of a billionth of a second). The new results have now been published in the journal "Nature communications".

Playing with Invisible Colours
"Under certain conditions, laser pulses can self-compress and become shorter. This is a well-known phenomenon in laser science", says Audrius Pugzlys. "But until now, people used to believe that self-compression in solid media at extremely high intensities is impossible."

Unlike the light of a simple laser pointer, an ultrashort laser pulse does not only have one specific colour. It is a mixture of a spectrum of different wavelengths - in this case centred around 3.9 micrometers, in the long infrared region, invisible to the human eye.

In vacuum, light always travels at the same speed, regardless of its wavelength. But this is not the case for light traversing a solid material. "The material causes some components of the laser pulse to move faster than others. If this effect is cleverly used, the laser pulse is compressed, it becomes shorter just by travelling through the material", says Skirmantas Alisauskas.

This technique, however, is not always applicable. "If a pulsed laser beam of very high intensities is sent through a material, the beams tends to collapse chaotically into many separate filaments", says Audrius Pugzlys.

"It is like a bolt of lightning that spontaneously breaks up into various branches." Each of the branches only carries a small part of the energy of the original beam, the resulting laser beam cannot be used for advanced strong-field laser experiments any more.

Breaking the filamentation threshold by four orders of magnitude
The Viennese research group, in collaboration with researchers from Moscow state university, has now identified conditions which lead to self-compression and an extremely high peak power without causing the beam to collapse into filaments.

"As it turns out, we are dealing with two different length scales", says Valentina Shumakova. "The length scale of the unwanted filamentation is longer than the length on which self-compression occurs. Therefore, it is possible to find a parameter regime in which the pulse is compressed but filamentation does not yet set in." The power of the lase pulse is 10,000 times higher than the filamentation threshold - and still it does not collapse.

The team used an Yttrium aluminium garnet (YAG) crystal with a width of only a few millimetres - and the results are remarkable: By sending the laser pulse through the crystal, its duration decreases from 94 femtoseconds to a mere 30 femtoseconds.

Its energy stays almost the same, and the power (energy per time) increases by a factor three, to almost half a terawatt. "As the pulse is very short, its extremely high power opens the door to many exciting experiments and maybe even to new technologies in laser science", says Audrius Pugzlys.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
UMD physicists discover 'smoke rings' made of laser light
College Park, MD (SPX) Sep 13, 2016
Most basic physics textbooks describe laser light in fairly simple terms: a beam travels directly from one point to another and, unless it strikes a mirror or other reflective surface, will continue traveling along an arrow-straight path, gradually expanding in size due to the wave nature of light. But these basic rules go out the window with high-intensity laser light. Powerful laser beam ... read more


TECH SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TECH SPACE
Mars hosted lakes, snowmelt-fed streams much later than previously thought

Opportunity departs Marathon Valley to head deeper into Endeavour Crater

Mars Rover Views Spectacular Layered Rock Formations

Storm Reduces Available Solar Energy on Opportunity

TECH SPACE
Pentagon push to tap tech talent in 'weird' Texas city

Astronaut returns home after logging record-breaking 534 days in space

'Star Trek' 50-year mission: to show the best of humanity

Vietnam's 'Silicon Valley' sparks startup boom

TECH SPACE
China launches second space lab: Xinhua

China to launch second space laboratory: Xinhua

No Storm for Tiangong 2

China eyes year-long stays for space station astronauts

TECH SPACE
US astronauts complete spacewalk for ISS maintenance

Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

TECH SPACE
Virgin Galactic signs Sky and Space Global as LauncherOne customer

A quartet of Galileo satellites is prepared for launch on Ariane 5

What Happened to Sea Launch

SpaceX scours data to try to pin down cause rocket explosion on launch pad

TECH SPACE
ALMA locates possible birth site of icy giant planet

New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

Could Proxima Centauri b Really Be Habitable

TECH SPACE
Developing composites that self-heal at very low temperatures

With great power comes great laser science

Metal in chains

Chemists watch the insides of batteries in 3D









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.