. | . |
Chemists watch the insides of batteries in 3D by Brooks Hays New York (UPI) Sep 12, 2016
Researchers at New York University have developed a new technique for imaging the insides of batteries in 3D. The high-resolution imaging allows scientists to watch the batteries charge and discharge in real time. "One particular challenge we wanted to solve was to make the measurements 3D and sufficiently fast, so that they could be done during the battery-charging cycle," Alexej Jerschow, a professor of chemistry at NYU, said in a news release. "This was made possible by using intrinsic amplification processes, which allow one to measure small features within the cell to diagnose common battery failure mechanisms," Jerschow explained. "We believe these methods could become important techniques for the development of better batteries." The new-and-improved magnetic resonance imaging technique helped researchers peer inside rechargeable lithium-ion batteries -- the power source for a variety of electronics, including smartphones, laptops and electric cars. Scientists have high hopes for lithium-ion batteries, but their potential is currently being held back by dendrites -- deformities which form in lithium metal over time. Dendrites hinder the efficiency of lithium-ion batteries and can even cause the batteries to catch on fire. Scientists developed the latest imaging method in order to monitor the development of dendrites inside lithium-ion cells, and to understand what kinds of conditions trigger their growth. When researchers focused their imaging on the batteries' electrolyte solution, which carries charged ions between the two electrodes, distortions appeared in the vicinity of growing dendrites. "The method examines the space and materials around dendrites, rather than the dendrites themselves," said Andrew Ilott, a postdoctoral fellow at NYU. "As a result, the method is more universal." Ilott is the lead author of a new paper detailing the novel MRI technique. The paper was published this week in the journal PNAS. "We can examine structures formed by other metals, such as, for example, sodium or magnesium--materials that are currently considered as alternatives to lithium," Ilott added. "The 3D images give us particular insights into the morphology and extent of the dendrites that can grow under different battery operating conditions."
Related Links Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |