. 24/7 Space News .
WATER WORLD
Whatever sea level rise brings, NASA will be there
by Jane J. Lee for JPL News
Pasadena CA (JPL) Apr 23, 2020

The Mississippi River Delta contains vast areas of marshes, swamps and barrier islands - important for wildlife and as protective buffers against storms and hurricanes. Rapid land subsidence due to sediment compaction and dewatering increases the rate of submergence in this system.

Greenland and coastal Louisiana may not seem to have a lot in common. An autonomous territory of Denmark, Greenland is covered in snow most of the year and is home to about 56,000 people. On the other hand, more than 2 million people call coastal Louisiana home and the region rarely sees snow.

But their economies, though 3,400 miles (5,400 kilometers) apart, share a dependence on the sea. The majority of Greenland's residents rely on the territory's robust Arctic fishing industry. And in Louisiana, the coasts, ports and wetlands provide the basis for everything from shipping to fishing to tourism. As a result, both locales and the people who live in them are linked by a common environmental thread: melting ice and consequent sea level rise.

NASA Sees the Seas
Thanks to altimetry missions, beginning with the U.S.-French TOPEX / Poseidon mission launched in 1992 and continuing through the present with the Jason series, we now have a nearly three-decade-long record of sea level change.

Similarly, because of missions like the U.S.-German Gravity Recovery and Climate Experiment (GRACE) and its successor, GRACE Follow-On, we know a lot more about what the ice is doing than we used to, especially at the poles. For instance, we know that Greenland lost 600 billion tons of ice last summer alone. That's enough to raise global sea levels by a tenth of an inch (2.2 millimeters). We also know that both Greenland and Antarctica are losing ice six times faster than they were in the 1990s.

These numbers matter because frozen within all of the glaciers and ice sheets is enough water to raise global sea levels by more than 195 feet (60 meters) - key word here being "global." Ice that melts in Greenland and Antarctica, for example, increases the volume of water in the ocean as a whole and can lead to flooding far from where the melting occurred, like in coastal communities half a world away.

In addition to using satellite data to monitor sea levels and ice melt, NASA scientists are observing the seas from a closer vantage point.

"The satellites tell us it's happening. But we want to know why - what's causing it?" said Josh Willis of the agency's Jet Propulsion Laboratory in Southern California. "Generally speaking, it's global warming. But in a specific sense, how much is it the melting of polar ice sheets as opposed to glaciers? And how much is it ocean warming and thermal expansion?" he said, referring to how water expands as it warms. "Most importantly, what's going to happen in the future?"

Willis is the principal investigator for NASA's Ocean's Melting Greenland (OMG), an air and ship-borne mission designed to answer some of these questions. OMG maps and measures the height of glaciers along Greenland's coast each year. It also measures the temperature and salinity of the ocean around the coastline and has developed precision maps of the ocean floor there. Combined, these datasets reveal to scientists how Greenland's glaciers are responding to changes both in the warming waters below them and in the warming air above them.

"The satellites are telling us how much global sea level is rising, but the airborne and shipborne data are really telling us how much Greenland is contributing to it, and what's causing Greenland to contribute to it," Willis said. "It's a piece of a much bigger puzzle, but it's an important piece because Greenland alone has enough ice to raise global sea levels by 25 feet [7.6 meters]."

Melting Here, Flooding There
As the ice melts in one part of the world, elsewhere, coastal communities in particular wrangle with the consequences - the most common: flooding. High-tide flooding, where seawater spills onto land and into low-lying communities when the tide comes in, has doubled in the last 30 years. Other factors, such as ocean currents, the terrain and subsidence, or land sinking, also influence a region's susceptibility to flooding.

In addition to measuring global sea level changes, NASA scientists are working with land and resource managers to help them understand and mitigate these regional flooding risks.

"A lot of coastal communities are working to identify particular parts of their towns where there have been flooding issues, and they are trying to adopt strategies to lessen the impact of sea level rise and flooding in those areas," said JPL's Ben Hamlington, head of the Sea Level Change Science Team. "We're often able to provide the high-resolution information that they need to make important decisions, particularly in terms of subsidence, which can differ quite a bit over even short distances."

Because subsidence is so variable - it can occur in measurements of less than an inch to feet, and over areas of a few acres to many miles - it is an important factor in assessing and responding to flood risk. For example, in a 2017 study of Hampton Roads, Virginia, an area prone to flooding, NASA scientists, including Hamlington (who was with Old Dominion University at the time), detected major differences in the rate of subsidence in areas just a few miles apart.

"It highlights the fact that subsidence information should be incorporated into land use decisions and taken into consideration for future planning, including at the local level," Hamlington said.

In order to get crucial information like this into the hands of stakeholders, Hamlington's team is working on a new, interactive sea level assessment tool. Available in coming weeks on the agency's sea level website, it will provide quantitative information, based on NASA observations, on sea level rise in the coastal U.S. and the processes driving it.

Disaster Response
One reason floods are among the most common natural disasters in the U.S., resulting in billions of dollars in damage each year, is that they can be caused by a number of factors, including excessive rainfall, snowmelt, levee or dam failures, or storm surges from hurricanes. In other words, flooding is a threat that effects nearly every region of the U.S.

NASA's role continues even after a flood has occurred. The agency regularly provides relief groups and response agencies, including the Federal Emergency Management Agency (FEMA), with crucial satellite-derived data and decision-support maps when flooding events occur.

"It can be difficult to assess the extent of flooding from the ground because flood waters can recede and flood extent can disappear in a matter of hours," said JPL's Sang-Ho Yun, Disaster Response lead on NASA's Advanced Rapid Imaging and Analysis (ARIA) team. "After an earthquake, damaged buildings stay damaged until they are repaired. But flood extent is like a ghost - it is there and then it disappears."

Earth-observing satellites can fill in some of the blanks. Using synthetic aperture radar (SAR) that penetrates clouds and rain, day and night, including data acquired by the European Space Agency's Sentinel-1 and Japan's ALOS-2 satellites, Yun and the ARIA team can identify areas that are likely flooded.

"In the satellite radar data, the bare ground has its own roughness, but when you cover the ground with smooth water, it becomes like a mirror," Yun said. "When the radar signal from the satellite hits the bare ground, it reflects back to the satellite. But when the signal hits water on the surface instead, it actually reflects away from the satellite, so flooded areas appear darker than normal."

Yun's team processes the satellite data to produce flood maps (like this one) that FEMA and other agencies can use in their disaster response efforts.

NASA's Disasters Program, in the agency's Earth Science Division, also provides extremely useful information on the use of Earth observations in the prediction of, preparation for, response to and recovery from natural disasters like flooding.

The NASA Disasters Mapping Portal provides access to near real-time data products and maps of disaster areas. The flood dashboard, which brings together observations and products from NASA, the National Weather Service and the United States Geological Survey (USGS) to provide a more complete picture of the extent of flooding, is also publicly accessible.

In some way or other, the effects of sea level rise, whether direct or indirect, will touch us all. But from Greenland to Louisiana to coastal regions around the world, NASA continues to provide key insight into our rising seas and how to navigate the effects of sea level rise.


Related Links
Ocean Levels at Jason
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
What is fluid lensing
Moffett Field CA (SPX) Apr 10, 2020
Whenever you look through a substance, whether it's the water in a pool or a pane of old, rippled glass, the objects you see look distorted. For centuries, astronomers have been mapping the sky through the distortions caused by our atmosphere, however, in recent years, they've developed techniques to counter these effects, clearing our view of the stars. If we turn to look at the Earth instead of the skies, distorted visuals are a challenge too: Earth scientists who want to map the oceans or study under ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

WATER WORLD
NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Scientific machine learning paves way for rapid rocket engine design

NASA announces first SpaceX crewed flight for May 27

US Rocketry Chief Offers Novel Explanation for Why America Continues to Buy Russia's RD-180 Engines

WATER WORLD
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

WATER WORLD
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

WATER WORLD
SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

OneWeb goes bankrupt

WATER WORLD
Utilizing the impact resistance of the world's hardest concrete for disaster prevention

Sensors woven into a shirt can monitor vital signs

Best homemade mask combines cotton, natural silk, chiffon

Now metal surfaces can be instant bacteria killers

WATER WORLD
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

WATER WORLD
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.