24/7 Space News
EXO WORLDS
Webb detects tiny quartz crystals in clouds of hot gas giant
stock illustration only
Webb detects tiny quartz crystals in clouds of hot gas giant
by Staff Writers
Washington DC (SPX) Oct 17, 2023

Catching a glimpse of one of the most common and familiar minerals on Earth rarely merits a Webb detects tiny quartz crystals in clouds of hot gas giant. Quartz is found in beach sands, building stones, geodes, and gem shops around the world. It's melted to produce glass, refined for silicon microchips, and used in watches to keep time.

So what's so special about the latest discovery from NASA's James Webb Space Telescope? Imagine quartz crystals that appear quite literally out of thin air. A mist of glittering grains so small that 10,000 could fit side-by-side across a human hair. Swarms of pointy, glassy nanoparticles racing through the sweltering atmosphere of a puffy gas giant exoplanet at thousands of miles per hour.

Webb's unique ability to measure the extremely subtle effects of those crystals on starlight - and from a distance of more than seven million billion miles, no less - is providing critical information about the composition of exoplanet atmospheres and new insights into their weather.

Researchers using NASA's James Webb Space Telescope have detected evidence for quartz nanocrystals in the high-altitude clouds of WASP-17 b, a hot Jupiter exoplanet 1,300 light-years from Earth. The detection, which was uniquely possible with MIRI (Webb's Mid-Infrared Instrument), marks the first time that silica (SiO2) particles have been spotted in an exoplanet atmosphere.

"We were thrilled!" said David Grant, a researcher at the University of Bristol in the UK and first author on a paper being published in the Astrophysical Journal Letters. "We knew from Hubble observations that there must be aerosols - tiny particles making up clouds or haze - in WASP-17 b's atmosphere, but we didn't expect them to be made of quartz."

Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone - which is pure SiO2.

The result from this team, which also includes researchers from NASA's Ames Research Center and NASA's Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. "We fully expected to see magnesium silicates," said co-author Hannah Wakeford, also from the University of Bristol. "But what we're seeing instead are likely the building blocks of those, the tiny 'seed' particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs."

Detecting Subtle Variations
With a volume more than seven times that of Jupiter and a mass less than one-half of Jupiter, WASP-17 b is one of the largest and puffiest known exoplanets. This, along with its short orbital period of just 3.7 Earth-days, makes the planet ideal for transmission spectroscopy: a technique that involves measuring the filtering and scattering effects of a planet's atmosphere on starlight.

Webb observed the WASP-17 system for nearly 10 hours, collecting more than 1,275 brightness measurements of 5- to 12-micron mid-infrared light as the planet crossed its star. By subtracting the brightness of individual wavelengths of light that reached the telescope when the planet was in front of the star from those of the star on its own, the team was able to calculate the amount of each wavelength blocked by the planet's atmosphere.

What emerged was an unexpected "bump" at 8.6 microns, a feature that would not be expected if the clouds were made of magnesium silicates or other possible high-temperature aerosols like aluminum oxide, but which makes perfect sense if they are made of quartz.

Crystals, Clouds, and Winds
While these crystals are probably similar in shape to the pointy hexagonal prisms found in geodes and gem shops on Earth, each one is only about 10 nanometers across - one-millionth of one centimeter.

"Hubble data actually played a key role in constraining the size of these particles," explained co-author Nikole Lewis of Cornell University, who leads the Webb Guaranteed Time Observation (GTO) program designed to help build a three-dimensional view of a hot Jupiter atmosphere. "We know there is silica from Webb's MIRI data alone, but we needed the visible and near-infrared observations from Hubble for context, to figure out how large the crystals are."

Unlike mineral particles found in clouds on Earth, the quartz crystals detected in the clouds of WASP-17 b are not swept up from a rocky surface. Instead, they originate in the atmosphere itself. "WASP-17 b is extremely hot - around 2,700 degrees Fahrenheit (1,500 degrees Celsius) - and the pressure where the quartz crystals form high in the atmosphere is only about one-thousandth of what we experience on Earth's surface," explained Grant. "In these conditions, solid crystals can form directly from gas, without going through a liquid phase first."

Understanding what the clouds are made of is crucial for understanding the planet as a whole. Hot Jupiters like WASP-17 b are made primarily of hydrogen and helium, with small amounts of other gases like water vapor (H2O) and carbon dioxide (CO2). "If we only consider the oxygen that is in these gases, and neglect to include all of the oxygen locked up in minerals like quartz (SiO2), we will significantly underestimate the total abundance," explained Wakeford. "These beautiful silica crystals tell us about the inventory of different materials and how they all come together to shape the environment of this planet."

Exactly how much quartz there is, and how pervasive the clouds are, is hard to determine. "The clouds are likely present along the day/night transition (the terminator), which is the region that our observations probe," said Grant. Given that the planet is tidally locked with a very hot day side and cooler night side, it is likely that the clouds circulate around the planet, but vaporize when they reach the hotter day side. "The winds could be moving these tiny glassy particles around at thousands of miles per hour."

WASP-17 b is one of three planets targeted by the JWST Telescope Scientist Team's Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy (DREAMS) investigations, which are designed to gather a comprehensive set of observations of one representative from each key class of exoplanets: a hot Jupiter, a warm Neptune, and a temperate rocky planet. The MIRI observations of hot Jupiter WASP-17 b were made as part of GTO program 1353.

Research Report:JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

Related Links
Webb Space Telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Researchers capture first-ever afterglow of huge planetary collision in outer space
Bristol UK (SPX) Oct 12, 2023
The study, published in Nature, reports the sighting of two ice giant exoplanets colliding around a sun-like star, creating a blaze of light and plumes of dust. Its findings show the bright heat afterglow and resulting dust cloud, which moved in front of the parent star dimming it over time. The international team of astronomers was formed after an enthusiast viewed the light curve of the star and noticed something strange. It showed the system doubled in brightness at infrared wavelengths some th ... read more

EXO WORLDS
India launches key test for manned orbital mission

India wants a space station by 2035, moon mission by 2040

US astronaut gets used to Earth after record-setting 371 days in space

Planetary Scientist Alan Stern Joins Virgin Galactic for Research Mission

EXO WORLDS
'No prospects': Russians slowly leaving legendary spaceport city

SpaceX Achieves Back-to-Back Starlink Satellite Launches to Expand Global Internet Coverage

NASA's innovative rocket nozzle paves way for deep space missions

New SwRI chamber simulates harsh acoustic environment of rocket launches

EXO WORLDS
Sampling Sequoia: Sols 3984-3986

Welcome to the Drillhole Family, 'Sequoia': Sols 3982-3983: Welcome

Taking a Rain Check: Sols 3977-3979

Cliffhangers go by the name of 'Stand By' in Mission Ops: Sols 3980-3981

EXO WORLDS
Women sci-fi writer numbers rocketing in China

Next-generation rocket for China's manned space missions on track

Chinese sci-fi fans over the moon at Chengdu Worldcon

Chinese sci-fi steps into the spotlight

EXO WORLDS
Launch of Ovzon 3 targeted for as soon as December 2023

Urban Sky announces $9.75M Series A funding round

Berkeley Space Center at NASA Ames to become innovation hub for new aviation, space technology

Shield Capital closes $186M inaugural venture capital fund

EXO WORLDS
Revolutionary atomic sensor redefines radio wave antenna

Terran Orbital opens new printed circuit board assembly facility

NASA seeks development of universal payload interface

Star trackers emerge as new tool for high-precision space debris detection

EXO WORLDS
Webb detects tiny quartz crystals in clouds of hot gas giant

Extreme habitats: Microbial life in Old Faithful Geyser

Researchers capture first-ever afterglow of huge planetary collision in outer space

Astronomers discover first step toward planet formation

EXO WORLDS
NASA's Webb Discovers New Feature in Jupiter's Atmosphere

Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Plot thickens in the hunt for a ninth planet

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.