24/7 Space News
STELLAR CHEMISTRY
Webb Telescope detects universe's most distant complex organic molecules
The galaxy observed by Webb shows an Einstein ring caused by a phenomenon known as gravitational lensing.
ADVERTISEMENT
     
Webb Telescope detects universe's most distant complex organic molecules
by Staff Writers
Champaign IL (SPX) Jun 06, 2023

Researchers have detected complex organic molecules in a galaxy more than 12 billion light-years away from Earth - the most distant galaxy in which these molecules are now known to exist. Thanks to the capabilities of the recently launched James Webb Space Telescope and careful analyses from the research team, a new study lends critical insight into the complex chemical interactions that occur in the first galaxies in the early universe.

University of Illinois Urbana-Champaign astronomy and physics professor Joaquin Vieira and graduate student Kedar Phadke collaborated with researchers at Texas A and M University and an international team of scientists to differentiate between infrared signals generated by some of the more massive and larger dust grains in the galaxy and those of the newly observed hydrocarbon molecules.

"This project started when I was in graduate school studying hard-to-detect, very distant galaxies obscured by dust," Vieira said. "Dust grains absorb and re-emit about half of the stellar radiation produced in the universe, making infrared light from distant objects extremely faint or undetectable through ground-based telescopes."

In the new study, the JWST received a boost from what the researchers call "nature's magnifying glass" - a phenomenon called gravitational lensing. "This magnification happens when two galaxies are almost perfectly aligned from the Earth's point of view, and light from the background galaxy is warped and magnified by the foreground galaxy into a ring-like shape, known as an Einstein ring," Vieira said.

The team focused the JWST on SPT0418-47 - an object discovered using the National Science Foundation's South Pole Telescope and previously identified as a dust-obscured galaxy magnified by a factor of about 30 to 35 by gravitational lensing. SPT0418-47 is 12 billion light-years from Earth, corresponding to a time when the universe was less than 1.5 billion years old, or about 10% of its current age, the researchers said.

"Before having access to the combined power of gravitational lensing and the JWST, we could neither see nor spatially resolve the actual background galaxy through all of the dust," Vieira said.

Spectroscopic data from the JWST suggest that the obscured interstellar gas in SPT0418-47 is enriched in heavy elements, indicating that generations of stars have already lived and died. The specific compound the researchers detected is a type of molecule called polycyclic aromatic hydrocarbon, or PAH. On Earth, these molecules can be found in the exhaust produced by combustion engines or forest fires. Being comprised of carbon chains, these organic molecules are considered the basic building blocks for the earliest forms of life, the researchers said.

"What this research is telling us right now - and we are still learning - is that we can see all of the regions where these smaller dust grains are located - regions that we could never see before the JWST," Phadke said. "The new spectroscopic data lets us observe the galaxy's atomic and molecular composition, providing very important insights into the formation of galaxies, their lifecycle and how they evolve."

"We didn't expect this," Vieira said. "Detecting these complex organic molecules at such a vast distance is game-changing regarding future observations. This work is just the first step, and we're just now learning how to use it and learn its capabilities. We are very excited to see how this plays out."

"It's extremely cool that galaxies I discovered while writing my thesis would one day be observed by the JWST," Vieira said. "I am grateful to the U.S. taxpayers, the NSF and NASA for funding and supporting both the SPT and the JWST. Without these instruments, this discovery could have never been made."

The study findings are published in the journal Nature.

Research Report:Large variations in aromatic molecule emission resolved in a dust-rich galaxy

Related Links
University of Illinois at Urbana-Champaign
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Weigh a quasar's galaxy with precision
Lausanne, Switzerland (SPX) Jun 02, 2023
A team of researchers from EPFL have found a way to use the phenomenon of strong gravitational lensing to determine with precision - about 3 times more precise than any other technique - the mass of a galaxy containing a quasar, as well as their evolution in cosmic time. Knowing the mass of quasar host galaxies provides insight into the evolution of galaxies in the early universe, for building scenarios of galaxy formation and black hole development. The results are published in Nature Astronomy. ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

Shenzhou-16 spaceship transports seeds for breeding experiments

Boeing's first crewed space launch delayed, again

STELLAR CHEMISTRY
SpaceX Dragon cargo ship arrives at International Space Station

China launches Lijian-1 Y2 carrier rocket

Successful Launch and Deployment of Dragon into Orbit by SpaceX

Rocket launches with record payload

STELLAR CHEMISTRY
First Mars livestream: the movie

Slippery Science: Sols 3851-3852

How NASA gives a name to every spot it studies on Mars

Mars in colour as never seen before

STELLAR CHEMISTRY
Scientific experimental samples brought back to Earth, delivered to scientists

Shenzhou XV crew lands in Inner Mongolia

Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

STELLAR CHEMISTRY
Scrubbing Hubble images of satellite light tracks

How activity in outer space will affect regional inequalities in the future

ESA launches major recruitment drive for 2023

York Space Systems acquires Emergent Space Technologies

STELLAR CHEMISTRY
LeoLabs accelerates radar coverage in Europe with commissioning of the Azores Space Radar

Astroscale working Share My Space to facilitate space risk identification

RAND study calls for global space traffic management body

Meta's Zuckerberg shakes off Apple Vision Pro: report

STELLAR CHEMISTRY
Remains of an extinct world of organisms discovered

Elusive planets play "hide and seek" with CHEOPS

Astronomers observe giant tails of helium escaping Jupiter-like planet

'Hot Jupiters' may not be orbiting alone

STELLAR CHEMISTRY
Colorful Kuiper Belt puzzle solved by UH researchers

Juice deployments complete: final form for Jupiter

First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.