24/7 Space News
Astronomers observe giant tails of helium escaping Jupiter-like planet
Simulated view of the planet HAT-P-32b orbiting its parent star, HAT-P-32A. The planet is nearly twice the size of Jupiter and losing its atmosphere through dramatic tails of helium unfurling before and behind it as it travels through space. These tails are more than 50 times the length of the planet's radius. Credit: M. MacLeod (Harvard-Smithsonian Center for Astrophysics) and A. Oklopcic (Anton Pannekoek Institute for Astronomy, University of Amsterdam).
Astronomers observe giant tails of helium escaping Jupiter-like planet
by Staff Writers
Austin TX (SPX) Jun 09, 2023

A team of astronomers has used observations from the Hobby-Eberly Telescope (HET) at The University of Texas at Austin's McDonald Observatory to discover some of the longest tails of gas yet observed escaping a planet.

The planet, HAT-P-32b, is nearly twice the size of Jupiter and losing its atmosphere through dramatic jets of helium unfurling before and behind it as it travels through space. These tails are more than 50 times the length of the planet's radius. The discovery is published in the journal Science Advances.

Tails of escaping material around planets are not unheard of. They can be the result of a collision freeing a trail of dust and debris. Or, they can be caused by the heat of a nearby star energizing and blowing a planet's atmosphere into space. However, tails as long as HAT-P-32b's are truly remarkable.

"It is exciting to see how gigantic the extended tails are compared to the size of the planet and its host star," said Zhoujian Zhang, NASA Sagan fellow at the University of California, Santa Cruz. He led the team that made this discovery while part of The University of Texas at Austin HET Exospheres Project. The HET Exospheres Project studies the atmospheres of planets outside of our solar system.

Detecting HAT-P-32b's Dramatic Tails
To learn about the atmosphere of planets outside our solar system, astronomers can observe their parent star while the planet passes in front of it. This is what is referred to as a "transit." One example would be when Venus passes between the Earth and Sun.

During a transit, the star shines light through the passing planet's atmosphere - if there is one. Through a method called "spectroscopy," astronomers can study this light to identify what elements are present in the atmosphere. With spectroscopy, the light is broken into a spectrum, much like white light shining through a prism. Different bands of color in the spectrum correspond to different elements.

Previous studies had detected HAT-P-32b's tails. However, because astronomers had only observed the planet while it was passing in front of its star, the tails' true sizes remained unknown.

"We would not have seen this without the long-timeframe observations that we can get with the Hobby-Eberly Telescope," said Caroline Morley, assistant professor at The University of Texas at Austin and principal investigator for the HET Exospheres Project. "It allowed us to observe this planet for its full orbit."

Zhang's team observed HAT-P-32b over the course of several nights, capturing the moment when the planet crossed in front of the star as well as observations in the days before and after. This covered the full time it takes for the planet to orbit its star, ensuring the full extent of its tails was revealed.

HAT-P-32b's tails are likely caused by its parent star boiling off the planet's atmosphere. The planet is what astronomers refer to as a "hot Jupiter," meaning it is big, hot, gassy and has a close orbit around its star. Its orbit is so tight that the heat from its parent star is causing the gas in HAT-P-32b's atmosphere to expand. The atmosphere has expanded so much that some of it has escaped the planet's gravitational pull and been drawn into orbit around the nearby star.

"Our findings on HAT-P-32b may help us understand how other planets and their stars interact," said Morley. "We are able to take high-precision measurements on hot Jupiters, like this one, and then apply our findings to a wider range of planets."

Hobby-Eberly Telescope (HET) and the Study of Planetary Atmospheres
The HET is particularly well suited to studying atmospheres on planets outside our solar system. Its high-resolution instrument, the Habitable-Zone Planet Finder spectrograph, is able to observe objects at near-infrared wavelengths. This includes the wavelength associated with helium, allowing astronomers to observe the gas escaping HAT-P-32b and other similar planets.

Another advantage of observing with HET is that it surveys the same sweep of sky each night. Unlike most other telescopes, which tilt up and down, the HET's 10- by 11-meter mirror is always tilted at 55 degrees above the horizon. This can lead to high-precision, long-timeline observations of the same swath of sky each night.

"Because we can observe the system every night for several days in a row, we can detect physically large structures like this one," said Zhang. "Other planets might also have extended escaping atmospheres waiting to be discovered through similar monitoring."

The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

The HET Exospheres Project is funded by the NASA Exoplanets Research Program. The HET Habitable-Zone Planet Finder team is supported by grants from the National Science Foundation, the NASA Astrobiology Institute, and the Heising-Simons Foundation.

Research Report:Giant tidal tails of helium escaping the hot Jupiter HAT-P-32 b

Related Links
The University of Texas at Austin's McDonald Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Elusive planets play "hide and seek" with CHEOPS
Paris (ESA) Jun 09, 2023
ESA's exoplanet mission Cheops confirmed the existence of four warm exoplanets orbiting four stars in our Milky Way. These exoplanets have sizes between Earth and Neptune and orbit their stars closer than Mercury our Sun. These so-called mini-Neptunes are unlike any planet in our Solar System and provide a 'missing link' between Earth-like and Neptune-like planets that is not yet understood. Mini-Neptunes are among the most common types of exoplanets known, and astronomers are starting to find mor ... read more

Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

Falcon 9 deploys 53 Starlink satellites on SpaceX's 40th launch of the year

Astrobotic and Westinghouse team to power outer space

Arianespace and Orbex to explore European Launch Partnership

China launches rocket with record payload

Curiosity captures Morning and Afternoon on Mars

First Mars livestream: the movie

Artificial photosynthesis for real oxygen

How NASA gives a name to every spot it studies on Mars

Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

SpaceDaily.com removes all Network Advertising

Satellite swarms for science 'grow up' at NASA Ames

HawkEye 360's Cluster 7 begins operation in record time

CNES, E-Space complete next-generation low earth orbit constellation study

NASA laser communications terminal delivered for Artemis II lunar mission

Foldable phased-array transmitters for small satellites

Discharge test for launcher antenna

goTenna's mesh network demonstrates Oahu connectivity for U.S. military

Gemini North detects multiple heavier elements in atmosphere of hot Exoplanet

Elusive planets play "hide and seek" with CHEOPS

Planet orbiting 2 stars discovered using new technique

Phosphate, a key building block of life, found on Saturn's moon Enceladus

Colorful Kuiper Belt puzzle solved by UH researchers

Juice deployments complete: final form for Jupiter

First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.