. 24/7 Space News .
EARTH OBSERVATION
Warming temperatures increasingly alter structure of atmosphere
by Staff Writers
Boulder CO (SPX) Nov 09, 2021

Warming temperatures near Earth's surface are slowly pushing up the tropopause, which is the boundary between the two lowest layers of the atmosphere. (Illustration by Randy Russell, UCAR.)

Climate change is having an increasing impact on the structure of Earth's atmosphere, a new international study shows.

The research, published in Science Advances, draws on decades of weather balloon observations and specialized satellite measurements to quantify the extent to which the top of the lowest level of the atmosphere is rising. That region, the tropopause, is pushing up the boundary with the stratosphere by about 50-60 meters (about 165-195 feet) per decade.

The rising is caused by warming temperatures near Earth's surface that are causing the lower atmosphere to expand.

"This is an unambiguous sign of changing atmospheric structure," said Bill Randel, a scientist at the National Center for Atmospheric Research (NCAR) and co-author of the new study. "These results provide independent confirmation, in addition to all the other evidence of climate change, that greenhouse gases are altering our atmosphere."

The international research team was led by scientists at Nanjing University in China. The study was supported in part by the National Science Foundation, which is NCAR's sponsor.

Impacts from greenhouse gases, ozone-destroying chemicals
The height of the tropopause, an atmospheric region that divides the dense and turbulent troposphere from the overlying and more stable stratosphere, ranges from about 5 miles above Earth's surface at the poles to 10 miles at the equator, depending on the season. The location of the tropopause is of interest to commercial pilots who often fly in the lower stratosphere to avoid turbulence, and it plays a role in severe thunderstorms, whose overshooting tops sometimes drive the tropopause higher and draw down air from the stratosphere.

The steadily increasing height of the tropopause in recent decades does not significantly affect society or ecosystems, but it illustrates the wide-ranging impacts of greenhouse gas emissions.

Previous scientific studies have shown that the tropopause is rising. This was not only because of climate change, but also because of cooling in the stratosphere associated with ozone depletion. The 1987 Montreal Protocol and subsequent international agreements to restrict emissions of ozone-destroying chemicals, however, have successfully reversed the loss of ozone and stabilized temperatures in the lower stratosphere.

Randel and his co-authors pulled together newly available data to analyze how much the tropopause is continuing to rise now that stratospheric temperatures are no longer having a significant impact.

They turned primarily to two sources of information. One was a recently updated archive of observations from radiosondes, which have been lofted high into the atmosphere for decades on weather balloons to measure atmospheric properties. Because the radiosonde data is most detailed over land areas of the Northern Hemisphere between 20 and 80 degrees in latitude, the new study focused on the rising height of the tropopause in that region.

The scientists also analyzed observations from specialized satellite instruments dating back to 2002 that probe the atmosphere by measuring the degree to which Global Positioning System (GPS) radio signals bend and slow as they pass through the atmosphere. This innovative technique, known as GPS radio occultation, was pioneered in part by an array of satellites known as COSMIC (now COSMIC-2), whose data is processed and disseminated by the University Corporation for Atmospheric Research, which manages NCAR.

The research team then applied statistical techniques to account for the impact of natural events that temporarily change atmospheric temperatures and affect the tropopause, such as volcanic eruptions and the periodic warming of surface waters in the eastern tropical Pacific Ocean known as El Nino. This enabled them to isolate the role of human-induced warming.

Their analysis of radiosonde observations showed that the tropopause has increased in height at a steady pace since 1980: about 58-59 meters per decade, of which 50-53 meters per decade is attributable to human-induced warming of the lower atmosphere. This trend has continued even as the influence from stratospheric temperatures has waned, demonstrating that warming in the troposphere is having an increasingly large impact.

The satellite observations taken since 2000 verified that the height of the tropopause has increased over the past two decades.

"The study captures two important ways that humans are changing the atmosphere," Randel said. "The height of the tropopause is being increasingly affected by emissions of greenhouse gases even as society has successfully stabilized conditions in the stratosphere by restricting ozone-destroying chemicals."

Research Report: "Continuous rise of the tropopause in the Northern Hemisphere over 1980-2020"


Related Links
National Center for Atmospheric Research/University Corporation for Atmospheric Research
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NASA selects new mission to study storms, impacts on climate models
Greenbelt MD (SPX) Nov 08, 2021
NASA has selected a new Earth science mission that will study the behavior of tropical storms and thunderstorms, including their impacts on weather and climate models. The mission will be a collection of three SmallSats, flying in tight coordination, called Investigation of Convective Updrafts (INCUS), and is expected to launch in 2027 as part of NASA's Earth Venture Program. NASA selected INCUS through the agency's Earth Venture Mission-3 (EVM-3) solicitation that sought complete, space-based inv ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Harris to announce first National Space Council meeting in nearly a year

High winds delay ISS astronauts' return to Earth

NASA, SpaceX Reviewing Commercial Crew Rotation Plans

Astronauts to return from space station next week: NASA

EARTH OBSERVATION
ISS astronauts return to Earth in SpaceX craft after 6-month mission

Hypersonix to use Siemens' software in design of its hydrogen fuelled launchers

NASA prepares to fuel James Webb telescope for Dec. 18 launch

Major Artemis engine part arrives at Stennis for certification testing

EARTH OBSERVATION
Flight #15 - Start of the Return Journey

Sols 3287-3288: Assessing a New Potential Drill Target

Smart focus on Mars

Researchers begin to understand correlation of schumann resonances and dust storms on Mars

EARTH OBSERVATION
Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

EARTH OBSERVATION
iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

BT secures industry first Global Partnership with OneWeb

Intelsat and OneWeb demo global multi-orbit satellite service to Pentagon

EARTH OBSERVATION
Facebook whistleblower 'extremely concerned' by metaverse as deals worth billions emerge

China's Tencent buys Japanese game designer: report

Extracting high-quality magnesium sulphate from seawater desalination brine

Nuclear radiation used to transmit digital data wirelessly

EARTH OBSERVATION
To find life on other planets, NASA rocket team looks to the stars

Tidying up planetary nurseries

Rocky Exoplanets Are Even Stranger Than We Thought

Key role of the reactor surface in Miller's experiment on the molecular origin of life

EARTH OBSERVATION
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.