. 24/7 Space News .
TECH SPACE
Virtual contact lenses for radar satellites
by Staff Writers
Munich, Germany (SPX) Apr 18, 2018

The ocean east of Greenland is covered by ice all year round (the white line shows the boundary of the oceanic ice). The water underneath is subject to a dynamic seasonal process and is influenced by the currents of the Atlantic ocean. (Illustration: Marcello Passaro, Felix Muller / DGFI-TUM)

Radar satellites supply the data used to map sea level and ocean currents. However, up until now the radar's "eyes" have been blind where the oceans are covered by ice. Researchers at the Technical University of Munich (TUM) have now developed a new analysis method to solve this problem.

The melting of the polar ice cap would have a drastic effect: Sea level would rise by several meters around the world, impacting hundreds of millions of people who live close to coasts. "This means one of the most important questions of our time is how climate change is affecting the polar regions," explains Dr. Marcello Passaro of the TUM German Geodetic Research Institute.

The blind spot of the radar "eye"
But changes in sea level and ocean currents in the ice-covered regions of the Arctic and Antarctic in particular are very difficult to detect. The reason: The radar signals of the altimeter satellites that have been surveying the surfaces of the earth and oceans for more than two decades are reflected by the ice at the poles. This renders the water underneath the ice invisible.

But ocean water also passes through cracks and openings in the permanent ice, reaching the surface. "These patches of water are however very small and the signals are highly distorted by the surrounding ice.

Here standard evaluation methods like those used for measurements made on the open seas are incapable of returning reliable results," Passaro points out. Together with an international team he has now developed a data analysis method which sharpens the focus of the radar's eyes.

An algorithm for all occasions
The core of this virtual "contact lens" is the adaptive algorithm ALES+, (Adaptive Leading Edge Subwaveform). ALES+ automatically identifies the portion of the radar signal which is reflected by water and derives sea level values using this information only.

This makes it possible to precisely measure the altitude of the ocean water which reaches the surface through ice cracks and openings. By comparing several years of measurements, climate researchers and oceanographers can now draw conclusions about changes in sea level and ocean currents.

"The special thing about our method is that it is adaptive," Passaro notes.

"We can use one and the same algorithm to measure sea level in both open and ice-covered ocean areas. ALES+ can also be used for coastal waters, lakes and rivers. Here the signals are highly varied, but always exhibit certain characteristic properties which the system then learns."

The scientists were able to use a test scenario in the Greenland Sea to demonstrate that ALES+ returns water levels for ice-covered and open ocean regions which are significantly more precise than the results of previous evaluation methods.

Passaro, M., S. Kildegaard Rose, O. Andersen, E. Boergens, F. M. Calafat, D. Dettmering, J. Benveniste: ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sensing of Environment, 2018, DOI: 10.1016/j.rse.2018.02.074


Related Links
Technical University of Munich
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Raytheon awarded contract for AN/ALR-69A radar receiver system
Washington (UPI) Mar 30, 2018
The U.S. Air Force has awarded a contract to Raytheon Self Protect Services for work on its AN/ALR-69A digital Radar Warning Receiver system. The indefinite-quantity contract, worth $460 million, includes the design, creation and testing of line replaceable units and shop replaceable units for the system, the Defense Department announced on Thursday. Raytheon, a Massachusetts-based company, submitted the only bid for the contract. It will work on the deal in Goleta, Calif., and Forest, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA's New Space 'Botanist' Arrives at Launch Site

4,000 UAE Citizens Applied to Become Country's First Astronauts - Space Centre

Cosmonautics demonstrates how US, Russia should work together

Philippines to deploy riot police for Boracay tourist closure

TECH SPACE
ULA Atlas V launch to feature full complement of Aerojet Rocketdyne solid rocket boosters

SpaceX blasts off NASA's new planet-hunter, TESS

RL10 Selected for OmegA Rocket

ISRO not facing funds crunch: Chairman K.Sivan

TECH SPACE
NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

SwRI's Martian moons model indicates formation following large impact

US, Russia likely to go to Mars Together, former NASA astronaut says

Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

TECH SPACE
The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China to launch Long March-5 Y3 rocket in late 2018

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

TECH SPACE
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

TECH SPACE
NIST's new quantum method generates really random numbers

New type of opal formed by common seaweed discovered

Flat gallium joins roster of new 2-D materials

Polymer-graphene nanocarpets to electrify smart fabrics

TECH SPACE
Are we alone? NASA's new planet hunter aims to find out

Scientists blast iron with lasers to study the cores of rocky exoplanets

Once upon a time, an exoplanet was discovered

We think we're the first advanced earthlings - but how do we really know?

TECH SPACE
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.