. 24/7 Space News .
EXO WORLDS
Scientists blast iron with lasers to study the cores of rocky exoplanets
by Brooks Hays
Washington (UPI) Apr 17, 2018

By blasting a small iron sample with high-powered lasers at the Lawrence Livermore National Laboratory, scientists can replicate the extreme pressure and density conditions found inside the cores of large, rocky exoplanets.

The experiments have offered scientists unique insights into the core conditions found inside faraway super-Earths.

"The discovery of large numbers of planets outside our solar system has been one of the most exciting scientific discoveries of this generation," Ray Smith, a physicist at LLNL, said in a news release. "These discoveries raise fundamental questions."

"What are the different types of extrasolar planets and how do they form and evolve?" Smith said. "Which of these objects can potentially sustain surface conditions suitable for life? To address such questions, it is necessary to understand the composition and interior structure of these objects."

Of the more than 4,000 confirmed and candidate exoplanets discovered by Kepler and other planet-hunters, the largest percentage are so-called super-Earths, rocky planets with a radius between and one and four times that of Earth.

"Determining the interior structure and composition of these super-Earth planets is challenging but is crucial to understanding the diversity and evolution of planetary systems within our galaxy," Smith said.

The larger the rocky exoplanet, the more intense the pressure found inside its core. Because iron is the most abundant compositional element inside super-Earths, scientists set out to study its properties under extreme pressure.

Scientists used high-powered lasers and ramp compression techniques to replicate the extreme conditions. The laser at LLNL's National Ignition Facility can deliver 2 megajoules of laser energy over 30 nanoseconds, enough to compress the iron sample to 1.4 TPa, with a single TPa equaling 10 million atmospheres. That is four times the pressure achieved during previous experiments and the equivalent of the pressure found inside a rocky exoplanet with three to four times the mass of Earth.

Researchers described the experiments this week in the journal Nature Astronomy.

"Planetary interior models, which rely on a description of constituent materials under extreme pressures, are commonly based on extrapolations of low-pressure data and produce a wide range of predicated material states," Smith said. "Our experimental data provides a firmer basis for establishing the properties of a super-Earth planet with a pure iron planet."

"Furthermore, our study demonstrates the capability for determination of equations of state and other key thermodynamic properties of planetary core materials at pressures well beyond those of conventional static techniques," he said. "Such information is crucial for advancing our understanding of the structure and dynamics of large rocky exoplanets and their evolution."


Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Once upon a time, an exoplanet was discovered
Washington DC (SPX) Apr 17, 2018
In recent history, a very important achievement was the discovery, in 1995, of 51 Pegasi b, the first extrasolar planet ever found around a normal star other than the Sun. In a paper published in EPJ H, Davide Cenadelli from the Aosta Valley Astronomical Observatory (Italy) interviews Michel Mayor from Geneva Observatory (Switzerland) about his personal recollections of discovering this exoplanet. They discuss how the development of better telescopes made the discovery possible. They a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
First Steps to Space: Yuri Gagarin's Military Service Archive Declassified

Cosmonaut Avdeyev: We Must Survive in Any Situation

Top tomatoes thanks to Mars missions

'Big ideas' conference steps up funding for 'audacious' projects

EXO WORLDS
ULA Atlas V launch to feature full complement of Aerojet Rocketdyne solid rocket boosters

ISRO not facing funds crunch: Chairman K.Sivan

Alaska Aerospace Clarifies Commercial Aerospace Plans For Kodiak

Boeing HorizonX Invests in Reaction Engines, a UK Hypersonic Propulsion Company

EXO WORLDS
The Rock Outcrop 'Tome' Continues to Garner Interest On Mars

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

Mars impact crater or supervolcano?

Mars Express to get major software update

EXO WORLDS
Flowers on the Moon? China's Chang'e-4 to launch lunar spring

The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

EXO WORLDS
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

EXO WORLDS
Japan 'rare earth' haul sparks hopes of cutting China reliance

'Everything-repellent' coating could kidproof phones, homes

Swansea scientists discover greener way of making plastics

Large single-crystal graphene could advance scalable 2-D materials

EXO WORLDS
Circumbinary castaways: Short-period binary systems can eject orbiting worlds

An amazingly wide variety of disks

Newly discovered salty subglacial lakes could help search for life in solar system

NASA's newest planet-hunter, TESS, to survey the entire night sky

EXO WORLDS
Juno Provides Infrared Tour of Jupiter's North Pole

Pluto's largest moon, Charon, gets its first official feature names

SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.