. | . |
Scientists blast iron with lasers to study the cores of rocky exoplanets by Brooks Hays Washington (UPI) Apr 17, 2018 By blasting a small iron sample with high-powered lasers at the Lawrence Livermore National Laboratory, scientists can replicate the extreme pressure and density conditions found inside the cores of large, rocky exoplanets. The experiments have offered scientists unique insights into the core conditions found inside faraway super-Earths. "The discovery of large numbers of planets outside our solar system has been one of the most exciting scientific discoveries of this generation," Ray Smith, a physicist at LLNL, said in a news release. "These discoveries raise fundamental questions." "What are the different types of extrasolar planets and how do they form and evolve?" Smith said. "Which of these objects can potentially sustain surface conditions suitable for life? To address such questions, it is necessary to understand the composition and interior structure of these objects." Of the more than 4,000 confirmed and candidate exoplanets discovered by Kepler and other planet-hunters, the largest percentage are so-called super-Earths, rocky planets with a radius between and one and four times that of Earth. "Determining the interior structure and composition of these super-Earth planets is challenging but is crucial to understanding the diversity and evolution of planetary systems within our galaxy," Smith said. The larger the rocky exoplanet, the more intense the pressure found inside its core. Because iron is the most abundant compositional element inside super-Earths, scientists set out to study its properties under extreme pressure. Scientists used high-powered lasers and ramp compression techniques to replicate the extreme conditions. The laser at LLNL's National Ignition Facility can deliver 2 megajoules of laser energy over 30 nanoseconds, enough to compress the iron sample to 1.4 TPa, with a single TPa equaling 10 million atmospheres. That is four times the pressure achieved during previous experiments and the equivalent of the pressure found inside a rocky exoplanet with three to four times the mass of Earth. Researchers described the experiments this week in the journal Nature Astronomy. "Planetary interior models, which rely on a description of constituent materials under extreme pressures, are commonly based on extrapolations of low-pressure data and produce a wide range of predicated material states," Smith said. "Our experimental data provides a firmer basis for establishing the properties of a super-Earth planet with a pure iron planet." "Furthermore, our study demonstrates the capability for determination of equations of state and other key thermodynamic properties of planetary core materials at pressures well beyond those of conventional static techniques," he said. "Such information is crucial for advancing our understanding of the structure and dynamics of large rocky exoplanets and their evolution."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |