. | . |
New type of opal formed by common seaweed discovered by Staff Writers Bristol UK (SPX) Apr 19, 2018
Scientists have discovered a completely new type of opal formed by a common seaweed which harnesses natural technology by self-assembling a nanostructure of oil droplets to control how light reflects from its cells to display a shimmering array of colours that until now, has only been seen in the gem stone. The findings, published in Science Advances and led by Drs Heather Whitney and Ruth Oulton from the University of Bristol, show that the bright blue and green iridescent sheen from the brown algae seaweed, also known as "rainbow wrack" (Cystoseira Tamariscifolia) and commonly found throughout the European costal region including the UK, arises from a complex nanostructure that controls how light reflects from its cells containing chloroplasts. Even more remarkable, is how these seaweeds can switch this self-assembly on and off, creating changing opals which react to the changing sunlight in tidal rockpools. Such structures arise from nanosized spheres packed tightly in a regular way and are known to optics experts to reflect different colours from incoming white light into different directions. These types of structures are also seen naturally in gem stone opals, which comprise a nanostructure of tiny spheres of glass formed within hard stone deep below the earth's surface that naturally pack together in such a way that they diffract light into different directions giving the opal it's well-known opalescence. Dr Ruth Oulton, Professor Martin Cryan and Dr Martin Lopez-Garcia (now at the International Iberian Nanotechnology Institute, Portugal), all experts in nano-optics in Bristol's School of Physics and Department of Electrical Engineering, discovered that these natural, "living" opals form not from glass but from tiny oil droplets made by the seaweed. In a process unknown to present nanotechnology, the seaweed's chloroplasts-containing cells (which aid photosynthesis) self-assembles the oil droplets into a regular packing. Surprisingly, these seaweeds can switch this self-assembly on and off, creating changing opals which react to the changing sunlight in tidal rockpools. Even more remarkable is how the seaweed performs the dynamic self-assembly, over a timescale of just hours, is a true mystery to the research team. Dr Martin Lopez-Garcia, said: "The formation of opals from oil droplets is a completely new discovery. If nanotechnologists were able to understand and mimic the dynamic properties of this seaweed opal, we may in the future have biodegradable, switchable display technology that may be used in packaging or very efficient, low cost solar cells." Nathan Masters, a PhD student in the Schools of Physics and Biological Sciences at Bristol, discovered that by shining light onto the seaweed, the iridescence disappeared, but when kept in almost dark conditions, the blue-green sheen reappeared. By imaging the seaweed at a sub-nanoscale level, the team discovered that the seaweed was switching on and off the self-assembly, going from a disordered, unreflective state to an ordered, opalescent one. But most surprising to the research team was that the opal is dynamic. Why the seaweed does this remains to be proven, but Drs Heather Whitney and Heath O'Brien, who carried out the work while at Bristol's School of Biological Sciences, (now at Cardiff University), believe that because the opals sit in the same part of the cell as the chloroplasts - the light energy harvesting bodies of the organism - they are likely to be controlling the light levels, scattering the light evenly to all the available chloroplasts inside the cell. This may help the seaweed cope with different light levels during high and low tide. Dr Ruth Oulton, Reader in Quantum Photonics in the School of Physics and Department of Electrical and Electronic Engineering, added: "In the past decade, nanotechnologists have been able to make artificial opals out of similar glass nanospheres. But it seems that the humble seaweed is also able to make such artificial opals in its cells. So next time you're rock pooling in the UK during your summer holidays, see if you can find this amazing seaweed with its nano-manufacturing technology."
Flat gallium joins roster of new 2-D materials Houston TX (SPX) Apr 17, 2018 Scientists at Rice University and the Indian Institute of Science, Bangalore, have discovered a method to make atomically flat gallium that shows promise for nanoscale electronics. The Rice lab of materials scientist Pulickel Ajayan and colleagues in India created two-dimensional gallenene, a thin film of conductive material that is to gallium what graphene is to carbon. Extracted into a two-dimensional form, the novel material appears to have an affinity for binding with semiconductors like ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |