. 24/7 Space News .
TECH SPACE
Unraveling the crystal structure of a -70C Celsius superconductor
by Staff Writers
Osaka, Japan (SPX) Aug 26, 2016


(Left) Development of the superconducting transition temperature Tc. Hydrogen sulfide's highest Tc is H2S (150 GPa), and this is 30 K higher than what was previously the highest Tc superconductor a euro ? Cuprate, Hg-Ba2Ca2Cu3Oy - and the lowest temperature ever recorded on the Earth's surface to date (184 K/-93a"?). Image courtesy Osaka University. For a larger version of this image please go here.

For the first time in the world, a research group led by Osaka University, Japan, clarified the crystal structure of hydrogen sulfide in its superconducting phase at the high temperature of -70C. This was achieved by conducting a combination of experiments at one of the world's largest synchrotron radiation facilities, SPring-8 in Japan. These results mark a huge step towards developing room-temperature superconductors, which may provide promising solutions to energy problems.

Superconductivity is a phenomenon that occurs when the electrical resistance of materials reaches zero as they are cooled down to a certain temperature. While the possible scenarios for its use are manifold, such as using superconductors as energy transmission lines without energy loss, widespread use is difficult as costs for cooling are high. Last year, hydrogen sulfide set a new record for highest superconducting transition temperature under high pressure. However, its crystal structure, necessary for understanding its superconductivity mechanism, was not understood.

A research group led by Prof. Katsuya Shimizu and Dr. Mari Einaga at the Center for Science and Technology Under Extreme Conditions, Graduate School of Engineering Science, Osaka University, together with Dr. Mikhail Eremets at the Max Planck Institute for Chemistry, and Dr. Yasuo Ohishi at the Japan Synchrotron Radiation Research Institute, has now succeeded in clarifying this structure by simultaneously conducting measurements of high pressure electrical resistance and X-ray diffraction.

Since hydrogen sulfide consists of light elements, measurements required a special setup.

Therefore, these measurements were conducted at the synchrotron radiation facility SPring-8, and consisted of using a diamond anvil cell to conduct measurement under high-pressure and low temperature, and the high-pressure beam line BL10XU with which high-intensity, high-energy and micro-diameter X-ray beams for X-ray diffraction can be used, in order to examine the material's crystal structure.

The researchers clarified that under high pressure, H2S molecules underwent a structural change to H3S and that this H3S structure exhibited superconductivity.

Furthermore, from simultaneously measuring changes in pressure of superconducting transition temperature, they discovered that H3S displayed two superconducting phases: one with a cubic structure, the other with a hexagonal structure. They thereby managed to prove previous predictions from theoretical calculations.

The results of this study will contribute to clarifying the mechanisms of the high-temperature superconductivity observed in hydrogen sulfide. They also mark a considerable step in developing room-temperature superconductors and provide new insights that will be useful in the development of new materials that spread under high pressure.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Osaka University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Squid, jellyfish and wrinkled skin inspire materials for anti-glare screens and encryption
Philadelphia PA (SPX) Aug 23, 2016
What do squid and jellyfish skin have in common with human skin? All three have inspired a team of chemists to create materials that change color or texture in response to variations in their surroundings. These materials could be used for encrypting secret messages, creating anti-glare surfaces, or detecting moisture or damage, they say. The researchers will present their work at the 252n ... read more


TECH SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TECH SPACE
Test for damp ground at Mars' seasonal streaks finds none

Fossilized rivers suggest warm, wet ancient Mars

China unveils 2020 Mars rover concept: report

MAVEN Spacecraft Gears Up to Observe Global Dust Storm on Mars

TECH SPACE
Chinese sci-fi prepares to master the universe

China opens longest glass bottom bridge in world

NASA Licenses New Auto-Tracking Mobile Antenna Platform

HERA crew returns paving the way for human research

TECH SPACE
China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

China launches world first quantum satellite

TECH SPACE
Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

Russia Could Cut Down International Space Station Crew

TECH SPACE
Kourou busy with upcoming Arianespace missions

Ariane 5 is approved for this week's Arianespace launch with two Intelsat payloads

Russian Space Corporation, US Boeing Reach Deal on Dispute Over Sea Launch

Two Intelsat payloads installed on Ariane 5 for next heavy-lift launch

TECH SPACE
A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

Scientists to unveil new Earth-like planet: report

TECH SPACE
Unraveling the crystal structure of a -70C Celsius superconductor

UNIST to engineer next-generation smart separator membranes

3-D-printed structures 'remember' their shapes

Streamlining accelerated computing for industry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.