. | . |
3-D-printed structures 'remember' their shapes by Staff Writers Boston MA (SPX) Aug 29, 2016
Engineers from MIT and Singapore University of Technology and Design (SUTD) are using light to print three-dimensional structures that "remember" their original shapes. Even after being stretched, twisted, and bent at extreme angles, the structures - from small coils and multimaterial flowers, to an inch-tall replica of the Eiffel tower - sprang back to their original forms within seconds of being heated to a certain temperature "sweet spot." For some structures, the researchers were able to print micron-scale features as small as the diameter of a human hair - dimensions that are at least one-tenth as big as what others have been able to achieve with printable shape-memory materials. The team's results were published earlier this month in the online journal Scientific Reports. Nicholas X. Fang, associate professor of mechanical engineering at MIT, says shape-memory polymers that can predictably morph in response to temperature can be useful for a number of applications, from soft actuators that turn solar panels toward the sun, to tiny drug capsules that open upon early signs of infection. "We ultimately want to use body temperature as a trigger," Fang says. "If we can design these polymers properly, we may be able to form a drug delivery device that will only release medicine at the sign of a fever." Fang's coauthors include former MIT-SUTD research fellow Qi "Kevin" Ge, now an assistant professor at SUTD; former MIT research associate Howon Lee, now an assistant professor at Rutgers University; and others from SUTD and Georgia Institute of Technology. Ge says the process of 3-D printing shape-memory materials can also be thought of as 4-D printing, as the structures are designed to change over the fourth dimension - time. "Our method not only enables 4-D printing at the micron-scale, but also suggests recipes to print shape-memory polymers that can be stretched 10 times larger than those printed by commercial 3-D printers," Ge says. "This will advance 4-D printing into a wide variety of practical applications, including biomedical devices, deployable aerospace structures, and shape-changing photovoltaic solar cells."
Need for speed Shape-memory polymers are particularly intriguing: These materials can switch between two states - a harder, low-temperature, amorphous state, and a soft, high-temperature, rubbery state. The bent and stretched shapes can be "frozen" at room temperature, and when heated the materials will "remember" and snap back to their original sturdy form. To fabricate shape-memory structures, some researchers have looked to 3-D printing, as the technology allows them to custom-design structures with relatively fine detail. However, using conventional 3-D printers, researchers have only been able to design structures with details no smaller than a few millimeters. Fang says this size restriction also limits how fast the material can recover its original shape. "The reality is that, if you're able to make it to much smaller dimensions, these materials can actually respond very quickly, within seconds," Fang says. "For example, a flower can release pollen in milliseconds. It can only do that because its actuation mechanisms are at the micron scale."
Printing with light The researchers first create a model of a structure using computer-aided design (CAD) software, then divide the model into hundreds of slices, each of which they send through the projector as a bitmap - an image file format that represents each layer as an arrangement of very fine pixels. The projector then shines light in the pattern of the bitmap, onto a liquid resin, or polymer solution, etching the pattern into the resin, which then solidifies. "We're printing with light, layer by layer," Fang says. "It's almost like how dentists form replicas of teeth and fill cavities, except that we're doing it with high-resolution lenses that come from the semiconductor industry, which give us intricate parts, with dimensions comparable to the diameter of a human hair." The researchers then looked through the scientific literature to identify an ideal mix of polymers to create a shape-memory material on which to print their light patterns. They picked two polymers, one composed of long-chain polymers, or spaghetti-like strands, and the other resembling more of a stiff scaffold. When mixed together and cured, the material can be stretched and twisted dramatically without breaking. What's more, the material can bounce back to its original printed form, within a specific temperature range - in this case, between 40 and 180 degrees Celsius (104 to 356 degrees Fahrenheit). The team printed a variety of structures, including coils, flowers, and the miniature Eiffel tower, whose full-size counterpart is known for its intricate steel and beam patterns. Fang found that the structures could be stretched to three times their original length without breaking. When they were exposed to heat within the range of 40 C to 180 C, they snapped back to their original shapes within seconds. "Because we're using our own printers that offer much smaller pixel size, we're seeing much faster response, on the order of seconds," Fang says. "If we can push to even smaller dimensions, we may also be able to push their response time, to milliseconds."
Soft grip "The grippers are a nice example of how manipulation can be done with soft materials," Fang says. "We showed that it is possible to pick up a small bolt, and also even fish eggs and soft tofu. That type of soft grip is probably very unique and beneficial." Going forward, he hopes to find combinations of polymers to make shape-memory materials that react to slightly lower temperatures, approaching the range of human body temperatures, to design soft, active, controllable drug delivery capsules. He says the material may also be printed as soft, responsive hinges to help solar panels track the sun. "Very often, excessive heat will build up on the back side of the solar cell, so you could use [shape-memory materials] as an actuation mechanism to tune the inclination angle of the solar cell," Fang says. "So we think there will probably be more applications that we can demonstrate."
Related Links Massachusetts Institute of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |