24/7 Space News
University of Helsinki researchers solve cosmic conundrum
In the Supergalactic Plane, which lies on the equator of the picture, galaxies experience frequent interactions and mergers, leading to the formation of massive elliptical galaxies. By contrast, galaxies away from the plane evolve in relative isolation, allowing them to preserve their disk-like structure.
University of Helsinki researchers solve cosmic conundrum
by Staff Writers
Helsinki, Finland (SPX) Nov 21, 2023

Our own Milky Way galaxy is part of a much larger formation, the local Supercluster structure, which contains several massive galaxy clusters and thousands of individual galaxies. Due to its pancake-like shape, which measures almost a billion light years across, it is also referred to as the Supergalactic Plane.

Most galaxies in the universe fall into one of two categories: firstly, elliptical galaxies, made mostly of old stars and containing typically extremely massive central black holes, and secondly actively star-forming disk galaxies, with a spiral-like structure similar to the Milky Way's. Both types of galaxies are also found in the Local Supercluster, but while the Supergalactic Plane is teeming with bright ellipticals, bright disk galaxies are conspicuously absent.

A cosmic anomaly challenges the standard model of cosmology
This peculiar segregation of galaxies in the Local Universe, which has been known since the 1960s, features prominently in a recent list of "cosmic anomalies" compiled by renowned cosmologist and 2019 Nobel laureate Jim Peebles.

Now an international team led by University of Helsinki astrophysicists Till Sawala and Peter Johansson appear to have found an explanation. In an article published in Nature Astronomy, they show how the different distributions of elliptical and disk galaxies arise naturally due to the different environments found inside and outside of the Supergalactic Plane.

"In the dense galaxy clusters that are found on the Supergalactic Plane, galaxies experience frequent interactions and mergers, which leads to the formation of ellipticals and the growth of supermassive black holes. By contrast, away from the plane, galaxies can evolve in relative isolation, which helps them preserve their spiral structure", says Till Sawala.

In their work, the team made use of the SIBELIUS (Simulations Beyond The Local Universe) simulation, that follows the evolution of the universe over 13.8 billion years, from the early universe to the present. It was run on supercomputers in England and on CSC's Mahti supercomputer in Finland.

While most similar simulations consider random patches of the universe which cannot be directly compared to observations, the SIBELIUS simulation aims to precisely reproduce the observed structures, including the Local Supercluster. The final simulation result is remarkably consistent with the observations.

"By chance, I was invited to a symposium in honour of Jim Peebles last December, where he presented the problem in his lecture. And I realised that we had already completed a simulation that might contain the answer", comments Till Sawala. "Our research shows that the known mechanisms of galaxy evolution also work in this unique cosmic environment".

Next to the physics department, the University of Helsinki's Kumpula campus hosts a large statue showing the distribution of galaxies in the Local Supercluster. It was inaugurated 20 years ago by the British cosmologist Carlos Frenk, who is one of the co-authors of this new study. "The distribution of galaxies in the Local Supercluster is indeed remarkable", says Frenk of the new results. "But it is not an anomaly: our result shows that our standard model of dark matter can produce the most remarkable structures in the universe".

Research Report:Distinct distributions of elliptical and disk galaxies across the Local Supercluster as a CDM prediction

Related Links
University of Helsinki
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
IXPE untangles theories surrounding historic supernova remnant
Washington DC (SPX) Nov 22, 2023
NASA's IXPE (Imaging X-ray Polarimetry Explorer) telescope has captured the first polarized X-ray imagery of the supernova remnant SN 1006. The new results expand scientists' understanding of the relationship between magnetic fields and the flow of high-energy particles from exploding stars. "Magnetic fields are extremely difficult to measure, but IXPE provides an efficient way for us to probe them," said Dr. Ping Zhou, an astrophysicist at Nanjing University in Jiangsu, China, and lead author of ... read more

NASA awards $2.3 million to study growing food in lunar dust

U.S. and Saudi Arabia explore space for peaceful purposes

Earth bacteria could make lunar soil more habitable for plants

Big bang: Dutch firm eyes space baby

NASA, small companies eye new cargo delivery, heat shield technologies

Ariane 6 Core Stage fires up for long-duration test

Boosting rocket reliability at the material level

Heat Shield demo passes the test dubbed 'Just flawless'

Farewell, Solar Conjunction 2023: Sols 4023-4024

California lawmakers ask NASA not to cut Mars budget

Was There Life on Mars

Perseverance's Parking Spot

China's Lunar Samples on Display in Macao to Inspire Future Explorers

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

SpaceX launches more Starlink satellites from Cape Canaveral

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

A major boost for space skills and research in North East England

Ovzon and SSC close to sealing satellite communication contract worth $10M

China launches tech-experiment satellite

A satellite's death spiral

Beyond Gravity unveils reusable payload fairing concept

Tackling the Growing Challenge of Space Debris

First extragalactic exoplanet disc spotted outside of the Milky Way

Deformable Mirrors in Space: Key Technology to Directly Image Earth Twins

Alien haze, cooked in a lab, clears view to distant water worlds

Astronomers find 'tilted' planets even in pristine solar systems

Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.