24/7 Space News
STELLAR CHEMISTRY
IXPE untangles theories surrounding historic supernova remnant
marker illustration only
IXPE untangles theories surrounding historic supernova remnant
by Beth Ridgeway for NASA News
Washington DC (SPX) Nov 16, 2023

NASA's IXPE (Imaging X-ray Polarimetry Explorer) telescope has captured the first polarized X-ray imagery of the supernova remnant SN 1006. The new results expand scientists' understanding of the relationship between magnetic fields and the flow of high-energy particles from exploding stars.

"Magnetic fields are extremely difficult to measure, but IXPE provides an efficient way for us to probe them," said Dr. Ping Zhou, an astrophysicist at Nanjing University in Jiangsu, China, and lead author of a new paper on the findings, published in The Astrophysical Journal. "Now we can see that SN 1006's magnetic fields are turbulent, but also present an organized direction."

Situated some 6,500 light-years from Earth in the Lupus constellation, SN 1006 is all that remains after a titanic explosion, which occurred either when two white dwarfs merged or when a white dwarf pulled too much mass from a companion star. Initially spotted in spring of 1006 CE by observers across China, Japan, Europe, and the Arab world, its light was visible to the naked eye for at least three years. Modern astronomers still consider it the brightest stellar event in recorded history.

Since modern observation began, researchers have identified the remnant's strange double structure, markedly different from other, rounded supernova remnants. It also has bright "limbs" or edges identifiable in the X-ray and gamma-ray bands.

"Close-proximity, X-ray-bright supernova remnants such as SN 1006 are ideally suited to IXPE measurements, given IXPE's combination of X-ray polarization sensitivity with the capability to resolve the emission regions spatially," said Douglas Swartz, a Universities Space Research Association researcher at NASA's Marshall Space Flight Center in Huntsville, Alabama. "This integrated capability is essential to localizing cosmic-ray acceleration sites."

Previous X-ray observations of SN 1006 offered the first evidence that supernova remnants can radically accelerate electrons, and helped identify rapidly expanding nebulae around exploded stars as a birthplace for highly energetic cosmic rays, which can travel at nearly the speed of the light.

Scientists surmised that SN 1006's unique structure is tied to the orientation of its magnetic field, and theorized that supernova blast waves in the northeast and southwest move in the direction aligned with the magnetic field, and more efficiently accelerate high-energy particles.

IXPE's new findings helped validate and clarify those theories, said Dr. Yi-Jung Yang, a high-energy astrophysicist at the University of Hong Kong and coauthor of the paper.

"The polarization properties obtained from our spectral-polarimetric analysis align remarkably well with outcomes from other methods and X-ray observatories, underscoring IXPE's reliability and strong capabilities, Yang said.

Researchers say the results demonstrate a connection between the magnetic fields and the remnant's high-energy particle outflow. The magnetic fields in SN 1006's shell are somewhat disorganized, per IXPE's findings, yet still have a preferred orientation.

As the shock wave from the original explosion passes through the surrounding gas, the magnetic fields become aligned with the shock wave's motion. Charged particles are trapped by the magnetic fields around the original point of the blast, where they quickly receive bursts of acceleration. Those speeding high-energy particles, in turn, transfer energy to keep the magnetic fields strong and turbulent.

IXPE has observed three supernova remnants - Cassiopeia A, Tycho, and now SN 1006 - since launching in December 2021, helping scientists develop a more comprehensive understanding of the origin and processes of the magnetic fields surrounding these phenomena.

Scientists were surprised to find that SN 1006 is more polarized than the other two supernova remnants, but that all three show magnetic fields oriented such that they point outward from the center of the explosion. As researchers continue to explore IXPE data, they are re-orienting their understanding of how particles get accelerated in extreme objects like these.

IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. IXPE is led by NASA's Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder.

Related Links
IXPE
Universities Space Research Association
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Deep learning speeds up galactic calculations
Tokyo, Japan (SPX) Nov 16, 2023
Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies. However, key aspects of them are notoriously difficult to simulate accurately in reasonably short amounts of time. For the first time, a team of researchers, including those from The University of Tokyo, apply deep learning to the problem of supernova simulation. Their approach can speed up the simulation of supernovae, and therefore of galaxy formation and evolution as well. These simulations include the evolu ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
GreenOnyx's Wanna Greens Makes Space Debut Aboard SpaceX CRS-29 Mission

AI-Powered Space Situational Awareness Boosted by Neuraspace-Deimos Collaboration

Big bang: Dutch firm eyes space baby

Cosmic currents: Preserving water quality for astronauts during space exploration

STELLAR CHEMISTRY
Heat Shield demo passes the test dubbed 'Just flawless'

SpaceX Starship disintegrates after successful stage separation

Starship Test Flies Higher: SpaceX Marks Progress Despite Late Test Incident

Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects

STELLAR CHEMISTRY
Spacecraft fall silent as Mars disappears behind the Sun

The Long Wait

Here Comes the Sun: Perseverance Readies for Solar Conjunction

AI Chemist creates Mars-compatible oxygen catalyst from meteorites

STELLAR CHEMISTRY
China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

STELLAR CHEMISTRY
Amazon's Project Kuiper completes successful tests of broadband connectivity

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

Maxar hands over JUPITER 3, to EchoStar

Maritime Launch reports non-brokered private placement of convertible debentures

STELLAR CHEMISTRY
NASA's Deep Space Optical Comm Demo Sends, Receives First Data

ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

Japan PM says experts to talk in China seafood row

Rice researcher scans tropical forest with mixed-reality device

STELLAR CHEMISTRY
Hubble measures the size of the nearest transiting Earth-sized planet

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

Webb follows neon signs toward new thinking on planet formation

Supporting the search for alien life by exploring geologic faulting on icy moons

STELLAR CHEMISTRY
Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.