. 24/7 Space News .
SHAKE AND BLOW
UH researchers report new understanding of deep earthquakes
by Staff Writers
Houston TX (SPX) Aug 03, 2018

.

Researchers have known for decades that deep earthquakes - those deeper than 60 kilometers, or about 37 miles below the Earth's surface - radiate seismic energy differently than those that originate closer to the surface. But a systematic approach to understanding why has been lacking.

Now a team of researchers from the University of Houston has reported a way to analyze seismic wave radiation patterns in deep earthquakes to suggest global deep earthquakes are in anisotropic rocks, something that had not previously been done. The rock anisotropy refers to differences in seismic wave propagation speeds when measured along different directions.

Their findings were published Monday, July 30, by the journal Nature Geoscience.

Most earthquakes occur at shallow depths, according to the U.S. Geological Survey, and they generally cause more damage than deeper earthquakes. But there are still substantial questions about the causes of deep earthquakes.

Normal rocks are ductile, or pliable, at these great depths because of high temperature and thus aren't able to rupture in an abrupt fashion to produce deep earthquakes, which occur below subduction zones where two tectonic plates collide at ocean trenches. The plate being pushed under is referred to as the subducting slab. The fact that deep earthquakes occur only in these slabs suggests some unusual process is happening within the slab.

Yingcai Zheng, assistant professor of seismic imaging in the UH College of Natural Sciences and Mathematics and corresponding author for the paper, said seismologists have sought to understand deep earthquakes since the phenomenon was discovered in 1926. Hypotheses include the effect of fluids, runaway thermal heating or solid-phase change due to sudden collapse of the mineral crystal structure.

In addition to Zheng, researchers involved in the work include the first author Jiaxuan Li, a Ph.D. candidate in the Department of Earth and Atmospheric Sciences; Leon Thomsen, research professor of geophysics; Thomas J. Lapen, professor of geology; and Xinding Fang, adjunct professor at UH and concurrently associate professor at the Southern University of Science and Technology China.

"Over the past 50 years, there has been growing evidence that a large proportion of deep earthquakes do not follow the double-couple radiation pattern seen in most shallow earthquakes," Zheng said. "We set out to look at why that happens." The double-couple pattern is caused by a shear rupture of a pre-existing fault.

The work, funded by the National Science Foundation, looked at potential reasons for the differing radiation patterns; Zheng said earlier theories suggest that deep earthquakes stem from a different rupture mechanism and possibly different physical and chemical processes than those that spark shallow earthquakes.

But after studying the radiation patterns of 1,057 deep earthquakes at six subduction zones worldwide, the researchers determined another explanation. They found that the surrounding rock fabric enclosing the deep quake alters the seismic radiation into a non-double-couple pattern. "Both the common double-couple radiation patterns and uncommon patterns of deep earthquakes can be explained simultaneously by shear rupture in a laminated rock fabric," Li said.

Before the subducting plate enters the trench, it can absorb sea water to form hydrated anisotropic minerals. As the slab descends in the Earth's mantle, the water can be expelled due to high pressure and high temperature conditions, a process known as dehydration. The dehydration and strong shearing along the slab interface can make the rock brittle and lead to rupture in intermediate-depth earthquakes, defined as those between 60 kilometers and 300 kilometers deep (37 miles to 186 miles).

"We found at these depths that the anisotropic rock fabric is always parallel to the slab surface, although the slab can change directions greatly from place to place," Li said.

Anisotropy is also found in rocks at even greater depths, which suggests materials such as magnesite or aligned carbonatite melt pockets may be involved in generating the deep ruptures, the researchers said. Because the inferred anisotropy is high - about 25 percent - the widely believed meta-stable solid phase change mechanism is not able to provide the needed anisotropy inferred by the researchers.


Related Links
University of Houston
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
Volcano hikers tell of terror after Indonesia quake
Mataram, Indonesia (AFP) July 31, 2018
More than 500 hikers and guides stranded by landslides on an Indonesian mountain after an earthquake have returned to safety, with some recalling their terror when tonnes of rock cascaded down. The shallow 6.4-magnitude quake, which struck early Sunday on Lombok island and was followed by scores of aftershocks, triggered major landslides on Mount Rinjani, blocking the hiking routes that criss-cross it. Some 800 trekkers and their guides were on the mountain when the quake struck including citize ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
NASA, Commercial Partners Progress to Human Spaceflight Home Stretch

Space Station experiment reaches ultracold milestone

Cygnus concludes 9th Cargo Supply Mission to Space Station

Space tourism economics - financing and regulating trips to the final frontier

SHAKE AND BLOW
First SLS Core Stage flight hardware complete, ready for joining

NASA certifies Russia's RD-180 rocket engines for manned flights

SpaceX launches, lands rocket in challenging conditions

Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

SHAKE AND BLOW
Scientists looking for ways to grow crops on Red Planet

Students can now build their own rover model

Evidence of subsurface Martian liquid water bolstered

Life on Mars: Japan astronaut dreams after lake discovery

SHAKE AND BLOW
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

SHAKE AND BLOW
Thales and SSL form consortium to further design and develop Telesat's LEO constellation

We'll soon have ten times more satellites in orbit - here's what that means

Aerospace Workforce Training A National Mandate for 2018

Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

SHAKE AND BLOW
Tech titans jostle as Pentagon calls for cloud contract bids

Lasers write better anodes

Root vegetables to help make new buildings stronger, greener

Smart machine components alert users to damage and wear

SHAKE AND BLOW
Exoplanet detectives create reference catalog of spectra and geometric albedos

NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

WSU researcher sees possibility of moon life

SHAKE AND BLOW
New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.