. | . |
First SLS Core Stage flight hardware complete, ready for joining by Staff Writers Huntsville AL (SPX) Aug 01, 2018
The first major piece of core stage hardware for NASA's Space Launch System rocket has been assembled and is ready to be joined with other hardware for Exploration Mission-1, the first integrated flight of SLS and the Orion spacecraft. SLS will enable a new era of exploration beyond low-Earth orbit, launching crew and cargo on deep space exploration missions to the Moon, Mars and beyond. The backbone of the world's most powerful rocket, the 212-foot-tall core stage, will contain the SLS rocket's four RS-25 rocket engines, propellant tanks, flight computers and much more. Though the smallest part of the core stage, the forward skirt will serve two critical roles. It will connect the upper part of the rocket to the core stage and house many of the flight computers, or avionics. "Completion of the core stage forward skirt is a major step in NASA's progress to the launch pad," said Deborah Bagdigian, lead manager for the forward skirt at the agency's Marshall Space Flight Center in Huntsville, Alabama. "We're putting into practice the steps and processes needed to assemble the largest rocket stage ever built. With the forward skirt, we are improving and refining how we'll conduct final assembly of the rest of the rocket." On July 24, forward skirt assembly was wrapped up with the installation of all its parts. As part of forward skirt testing, the flight computers came to life for the first time as NASA engineers tested critical avionic systems that will control the rocket's flight. The construction, assembly and avionics testing occurred at NASA's Michoud Assembly Facility in New Orleans. Located throughout the core stage, the avionics are the rocket's "brains," controlling navigation and communication during launch and flight. It is critical that each of the avionics units is installed correctly, work as expected and communicate with each other and other components, including the Orion spacecraft and ground support systems. "It was amazing to see the computers come to life for the first time" said Lisa Espy, lead test engineer for SLS core stage avionics. "These are the computers that will control the rocket as it soars off the pad for Exploration Mission-1." The forward skirt test series was the first of many that will verify the rocket's avionics will work as expected during launch. The tests show the forward skirt was built correctly, and that all components and wiring on the inside have been put together and connected properly and are sending data over the lines as expected. The avionic computers ran "built-in tests" that Espy compares to the internal diagnostic tests performed by an automobile when first started. All of the health and data status reports came back as expected. The tests were a success and did not return any error codes. Such error codes would be similar to a check engine light on a car. The successful tests give the team the confidence needed to move forward with avionics installations in the core stage intertank and engine section. With more hardware and more interfaces, the installation in the intertank will be more complex, and the complexity will ramp up even more as the team moves to the engine section, introducing hydraulics and other hardware needed for the rocket's engines. "Each piece of hardware and each test builds to the next," Espy said. "That's why we're excited about the successful forward skirt tests. They lay a solid foundation as we continue to build more and more complex components and get the rocket ready for its first launch." The forward skirt is now ready to be joined with the rest of the rocket's core stage. Integration of the massive core stage will take place in two joins, the forward join - including the forward skirt, liquid oxygen tank and intertank - and the aft join - including the liquid hydrogen tank and the engine section. Engineers will perform standalone tests on each component as they are completed. Once the forward and aft joins are integrated, they will perform a final integrated function test, testing all the core stage's avionics together. The fully integrated core stage and its four RS-25 engines will then be fired up during a final test before launch. At NASA's Kennedy Space Center in Florida, the core stage will be stacked with the upper part of the rocket, including Orion, and joined to the rocket's twin solid rocket boosters, in preparation for EM-1.
Russia's Khrunichev Center Develops Concept of Reusable Rocket Moscow (Sputnik) Jul 25, 2018 Russia's Khrunichev State Research and Production Space Center has finished the development of a blueprint for Russia's reusable launch vehicle and sent the relevant materials to Roscosmos' Central Research Institute of Machine Building (TsNIIMash) for assessment, the Khrunichev center's press office told Sputnik. "The materials on reusable subjects were sent to TsNIIMash. They should study them and provide their expert opinion," a spokesperson for the space center said. Earlier it was repor ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |