. | . |
Lasers write better anodes by Staff Writers Thuwal, Saudi Arabia (SPX) Aug 02, 2018
Sodium-ion batteries have potential to replace the currently used lithium-ion batteries by using the cheaper (less than a thirtieth of the cost of lithium) and more abundant sodium resource. This has particular potential in Saudi Arabia, where sodium is readily available and easily extracted as a byproduct of water desalination, a significant source of potable water in the country. Yet normal graphite, the dominant anode material in lithium-ion batteries, struggles to store or intercalate sodium ions because sodium ions are larger than lithium ions. Hard carbon is a type of disordered graphite that can store more sodium ions, hence increasing battery capacity. The problem is that making hard carbon requires temperatures of almost 1000C. The KAUST team led by Husam Alshareef has developed a process using a simple bench-top laser to make three-dimensional hard carbon directly on copper collectors without excessive temperatures or additional coating steps. The team formed a polymer (urea-containing polyimide) sheet on copper and then exposed this sheet to strong laser light. By introducing nitrogen gas during the process, the team could replace some of the carbon atoms with nitrogen atoms, reaching an extremely high nitrogen level (13 atomic %), which is unattainable by other techniques. Thus, the three-dimensional graphene was more conductive, had expanded atomic spacing, and was directly bonded to the copper current collectors, eliminating the need for additional processing steps. "We wanted to find a way to make three dimensional hard carbons without having to excessively heat our samples. This way we could form the hard carbon directly on copper collectors," said Fan Zhang, a Ph.D. student in Alshareef's group. The KAUST researchers fabricated sodium-ion batteries using their laser-formed anode material. Their device exhibited a coulombic efficiency that exceeds most reported carbonaceous anodes, such as hard and soft carbon, and a sodium-ion capacity better than most previous carbon anodes in sodium-ion batteries. "I enjoyed learning from every member of Prof. Alshareef's group, especially Fan Zhang, who was my closest mentor," said Eman Alhajji, a KAUST Gifted Student Program (KGSP) intern and current undergraduate student at North Carolina State University, USA. Eman will join the group as a Ph.D. student next fall. "Zhang and Alhajji set an admirable example of productive collaboration between KAUST graduate students and visiting KGSP interns. Their work opens a new direction in battery research, which can be extended to other energy-storage technologies," said Alshareef.
Materials processing tricks enable engineers to create new laser material San Diego CA (SPX) Jul 19, 2018 By doping alumina crystals with neodymium ions, engineers at the University of California San Diego have developed a new laser material that is capable of emitting ultra-short, high-power pulses - a combination that could potentially yield smaller, more powerful lasers with superior thermal shock resistance, broad tunability and high-duty cycles. To achieve this advance, engineers devised new materials processing strategies to dissolve high concentrations of neodymium ions into alumina crystals. T ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |