. 24/7 Space News .
STELLAR CHEMISTRY
Two stars merged to form massive white dwarf
by Staff Writers
Warwick UK (SPX) Mar 03, 2020

Artist's impression of two white dwarfs in the process of merging. Depending on the combined mass, the system may explode in a thermonuclear supernova, or coalesce into a single heavy white dwarf, as with WDJ0551+4135.

A massive white dwarf star with a bizarre carbon-rich atmosphere could be two white dwarfs merged together according to an international team led by University of Warwick astronomers, and only narrowly avoided destruction.

They have discovered an unusual ultra-massive white dwarf around 150 light years from us with an atmospheric composition never seen before, the first time that a merged white dwarf has been identified using its atmospheric composition as a clue.

The discovery, published (2 March) in the journal Nature Astronomy, could raise new questions about the evolution of massive white dwarf stars and on the number of supernovae in our galaxy.

This star, named WDJ0551+4135, was identified in a survey of data from the European Space Agency's Gaia telescope. The astronomers followed up with spectroscopy taken using the William Herschel Telescope, focusing on those white dwarfs identified as particularly massive - a feat made possible by the Gaia mission. By breaking down the light emitted by the star, the astronomers were able to identify the chemical composition of its atmosphere and found that it had an unusually high level of carbon present.

Lead author Dr Mark Hollands, from the University of Warwick Department of Physics, said: "This star stood out as something we had never seen before. You might expect to see an outer layer of hydrogen, sometimes mixed with helium, or just a mix of helium and carbon. You don't expect to see this combination of hydrogen and carbon at the same time as there should be a thick layer of helium in between that prohibits that. When we looked at it, it didn't make any sense."

To solve the puzzle, the astronomers turned detective to uncover the star's true origins.

White dwarfs are the remains of stars like our own Sun that have burnt out all their fuel and shed their outer layers. Most are relatively lightweight, around 0.6 times the mass of our Sun, but this one weighs in at 1.14 solar masses, nearly twice the average mass. Despite being heavier than our Sun, it is compacted into two-thirds the diameter of Earth.

The age of the white dwarf is also a clue. Older stars orbit the Milky Way faster than younger ones, and this object is moving faster than 99% of the other nearby white dwarfs with the same cooling age, suggesting that this star is older than it looks.

Dr Hollands adds: "We have a composition that we can't explain through normal stellar evolution, a mass twice the average for a white dwarf, and a kinematic age older than that inferred from cooling. We're pretty sure of how one star forms one white dwarf and it shouldn't do this. The only way you can explain it is if it was formed through a merger of two white dwarfs."

The theory is that when one star in a binary system expands at the end of its life it will envelope its partner, drawing its orbit closer as the first star shrinks. The same will happen when the other star expands. Over billions of years, gravitational wave emission will shrink the orbit further, to the point that the stars merge together.

While white dwarf mergers have been predicted to occur, this one would be particularly unusual. Most of the mergers in our galaxy will be between stars with different masses, whereas this merger appears to be between two similarly sized stars. There is also a limit to how big the resulting white dwarf can be: at more than 1.4 solar masses it is thought that it would explode in a supernova though it may be possible for that these explosions can occur at slightly lower masses, so this star is useful in demonstrating how massive a white dwarf can get and still survive.

Because the merging process restarts the cooling of the star, it is difficult to determine how old it is. The white dwarf probably merged around 1.3 billion years ago but the two original white dwarfs may have existed for many billions of years prior.

It is one of only a handful of merged white dwarfs to be identified so far, and the only one via its composition.

Dr Hollands adds: "There aren't that many white dwarfs this massive, although there are more than you would expect to see which implies that some of them were probably formed by mergers.

"In the future we may be able to use a technique called asteroseismology to learn about the white dwarf's core composition from its stellar pulsations, which would be an independent method confirming this star formed from a merger.

"Maybe the most exciting aspect of this star is that it must have just about failed to explode as a supernova - these gargantuan explosions are really important in mapping the structure of the Universe, as they can be detected out to very large distances. However, there remains much uncertainty about what kind of stellar systems make it to the supernova stage. Strange as it may sound, measuring the properties of this 'failed' supernova, and future look-alikes, is telling us a lot about the pathways to thermonuclear self-annihilation."

Research Report: 'An ultra-massive white dwarf with a mixed hydrogen-carbon atmosphere as a likely merger remnant'


Related Links
University Of Warwick
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Gemini South telescope captures exquisite planetary nebula
Hilo HI (SPX) Feb 26, 2020
The latest image from the international Gemini Observatory showcases the striking planetary nebula CVMP 1. This object is the result of the death throes of a giant star and is a glorious but relatively short-lived astronomical spectacle. As the progenitor star of this planetary nebula slowly cools, this celestial hourglass will run out of time and will slowly fade from view over many thousands of years. Located roughly 6500 light-years away in the southern constellation of Circinus (The Compass) t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Book Review: Alcohol in Space - Past, Present and Future

Virgin Galactic opens up prebooking booking option

NASA selects proposals for student aeronautics, space projects

No going back: Bali's Chinese tourists fear virus-hit homeland

STELLAR CHEMISTRY
Boeing says longer Starliner software tests could have prevented flight failure

Northrop Grumman completes key test for Orion Launch Abort System Attitude Control Motor

AFRL, Masten Space Systems, NASA, collaborate on successful testing of methane engine

PLD Space successfully achieved a full rocket engine test for MIURA 1 mission

STELLAR CHEMISTRY
Mars InSight Lander to push on top of the 'Mole'

Ancient meteorite site on Earth could reveal new clues about Mars' past

Seismic activity on Mars resembles that found in the Swabian Jura

Trembling Mars gives up more seismic secrets

STELLAR CHEMISTRY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

STELLAR CHEMISTRY
Europlanet launches 10M euro Research Infrastructure to support planetary science

NSW Government establishes a home for space industry initiatives

Boeing buying Russian components for Starliner

Kleos Space secures 3M Euro loan agreement with Dubai family office

STELLAR CHEMISTRY
Exotrail Secures Contract with AAC Clyde Space to equip their customers' spacecrafts

SpaceLogistics completes first docking of Mission Extension Vehicle-1 to the Intelsat 901 satellite

Polish engineers develop flight software for OPS-SAT mission

New patented invention stabilizes, rotates satellites

STELLAR CHEMISTRY
Large Exoplanet Could Have the Right Conditions for Life

Astronomy student discovers 17 new planets, including Earth-sized world

Salmon parasite is world's first non-oxygen breathing animal

Sub-Neptune sized planet validated with the habitable-zone planet finder

STELLAR CHEMISTRY
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.