. 24/7 Space News .
EXO WORLDS
Large Exoplanet Could Have the Right Conditions for Life
by Staff Writers
Cambridge UK (SPX) Feb 28, 2020

Given the large size of K2-18b, it has been suggested that it would be more like a smaller version of Neptune than a larger version of Earth. A 'mini-Neptune' is expected to have a significant hydrogen 'envelope' surrounding a layer of high-pressure water, with an inner core of rock and iron. If the hydrogen envelope is too thick, the temperature and pressure at the surface of the water layer beneath would be far too great to support life.

Astronomers have found an exoplanet more than twice the size of Earth to be potentially habitable, opening the search for life to planets significantly larger than Earth but smaller than Neptune.

A team from the University of Cambridge used the mass, radius, and atmospheric data of the exoplanet K2-18b and determined that it's possible for the planet to host liquid water at habitable conditions beneath its hydrogen-rich atmosphere. The results are reported in The Astrophysical Journal Letters.

The exoplanet K2-18b, 124 light-years away, is 2.6 times the radius and 8.6 times the mass of Earth, and orbits its star within the habitable zone, where temperatures could allow liquid water to exist. The planet was the subject of significant media coverage in the autumn of 2019, as two different teams reported detection of water vapour in its hydrogen-rich atmosphere. However, the extent of the atmosphere and the conditions of the interior underneath remained unknown.

"Water vapour has been detected in the atmospheres of a number of exoplanets but, even if the planet is in the habitable zone, that doesn't necessarily mean there are habitable conditions on the surface," said Dr. Nikku Madhusudhan from Cambridge's Institute of Astronomy, who led the new research. "To establish the prospects for habitability, it is important to obtain a unified understanding of the interior and atmospheric conditions on the planet - in particular, whether liquid water can exist beneath the atmosphere."

Given the large size of K2-18b, it has been suggested that it would be more like a smaller version of Neptune than a larger version of Earth. A 'mini-Neptune' is expected to have a significant hydrogen 'envelope' surrounding a layer of high-pressure water, with an inner core of rock and iron. If the hydrogen envelope is too thick, the temperature and pressure at the surface of the water layer beneath would be far too great to support life.

Now, Madhusudhan and his team have shown that despite the size of K2-18b, its hydrogen envelope is not necessarily too thick and the water layer could have the right conditions to support life. They used the existing observations of the atmosphere, as well as the mass and radius, to determine the composition and structure of both the atmosphere and interior using detailed numerical models and statistical methods to explain the data.

The researchers confirmed the atmosphere to be hydrogen-rich with a significant amount of water vapour. They also found that levels of other chemicals such as methane and ammonia were lower than expected for such an atmosphere. Whether these levels can be attributed to biological processes remains to be seen.

The team then used the atmospheric properties as boundary conditions for models of the planetary interior. They explored a wide range of models that could explain the atmospheric properties as well as the mass and radius of the planet. This allowed them to obtain the range of possible conditions in the interior, including the extent of the hydrogen envelope and the temperatures and pressures in the water layer.

"We wanted to know the thickness of the hydrogen envelope - how deep the hydrogen goes," said co-author Matthew Nixon, a PhD student at the Institute of Astronomy. "While this is a question with multiple solutions, we've shown that you don't need much hydrogen to explain all the observations together."

The researchers found that the maximum extent of the hydrogen envelope allowed by the data is around 6% of the planet's mass, though most of the solutions require much less. The minimum amount of hydrogen is about one-millionth by mass, similar to the mass fraction of the Earth's atmosphere. In particular, a number of scenarios allow for an ocean world, with liquid water below the atmosphere at pressures and temperatures similar to those found in Earth's oceans.

This study opens the search for habitable conditions and bio-signatures outside the solar system to exoplanets that are significantly larger than Earth, beyond Earth-like exoplanets.

Additionally, planets such as K2-18b are more accessible to atmospheric observations with current and future observational facilities. The atmospheric constraints obtained in this study can be refined using future observations with large facilities such as the upcoming James Webb Space Telescope.

Research Report: "The Interior and Atmosphere of the Habitable-Zone Exoplanet K2-18b"


Related Links
University Of Cambridge
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Salmon parasite is world's first non-oxygen breathing animal
Washington DC (UPI) Feb 26, 2020
Scientists have discovered an unusual species of parasite hiding the muscles of salmon. The tiny species, comprised of just ten cells, is unlike all other animals known to science. The species, Henneguya salminicola, doesn't breathe oxygen. Over the course of its evolution, the parasite abandoned breathing and consuming oxygen in order to produce more energy. "Aerobic respiration was thought to be ubiquitous in animals, but now we confirmed that this is not the case," Dorothee Huchon, pr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Katherine Johnson, NASA mathematician, dies at 101

Vertex Aerospace Awarded $150M NASA Contract

Virgin Galactic opens up prebooking booking option

NASA selects proposals for student aeronautics, space projects

EXO WORLDS
Northrop Grumman completes key test for Orion Launch Abort System Attitude Control Motor

AFRL, Masten Space Systems, NASA, collaborate on successful testing of methane engine

PLD Space successfully achieved a full rocket engine test for MIURA 1 mission

Simple, fuel-efficient rocket engine could enable cheaper, lighter spacecraft

EXO WORLDS
Mars InSight Lander to push on top of the 'Mole'

Ancient meteorite site on Earth could reveal new clues about Mars' past

Seismic activity on Mars resembles that found in the Swabian Jura

Trembling Mars gives up more seismic secrets

EXO WORLDS
Construction of China's space station begins with start of LM-5B launch campaign

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

EXO WORLDS
Europlanet launches 10M euro Research Infrastructure to support planetary science

Kleos Space secures 3M Euro loan agreement with Dubai family office

NSW Government establishes a home for space industry initiatives

Boeing buying Russian components for Starliner

EXO WORLDS
SpaceLogistics completes first docking of Mission Extension Vehicle-1 to the Intelsat 901 satellite

Exotrail Secures Contract with AAC Clyde Space to equip their customers' spacecrafts

Polish engineers develop flight software for OPS-SAT mission

New patented invention stabilizes, rotates satellites

EXO WORLDS
Sub-Neptune sized planet validated with the habitable-zone planet finder

Salmon parasite is world's first non-oxygen breathing animal

Planet on edge of destruction in 18-hour year frenzy

LOFAR pioneers new way to study exoplanet environments

EXO WORLDS
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.