. | . |
Astronomy student discovers 17 new planets, including Earth-sized world by Staff Writers Vancouver, Canada (SPX) Feb 28, 2020
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission. Over its original four-year mission, the Kepler satellite looked for planets, especially those that lie in the "Habitable Zones" of their stars, where liquid water could exist on a rocky planet's surface. The new findings, published in The Astronomical Journal, include one such particularly rare planet. Officially named KIC-7340288 b, the planet discovered by Kunimoto is just 1 0.5 times the size of Earth - small enough to be considered rocky, instead of gaseous like the giant planets of the Solar System - and in the habitable zone of its star. "This planet is about a thousand light years away, so we're not getting there anytime soon!" said Kunimoto, a PhD candidate in the department of physics and astronomy. "But this is a really exciting find, since there have only been 15 small, confirmed planets in the Habitable Zone found in Kepler data so far." The planet has a year that is 142 0.5 days long, orbiting its star at 0.444 Astronomical Units (AU, the distance between Earth and our Sun) - just bigger than Mercury's orbit in our Solar System, and gets about a third of the light Earth gets from the Sun. Of the other 16 new planets discovered, the smallest is only two-thirds the size of Earth - one of the smallest planets to be found with Kepler so far. The rest range in size up to eight times the size of Earth. Kunimoto is no stranger to discovering planets: she previously discovered four during her undergraduate degree at UBC. Now working on her PhD at UBC, she used what is known as the "transit method" to look for the planets among the roughly 200,000 stars observed by the Kepler mission. "Every time a planet passes in front of a star, it blocks a portion of that star's light and causes a temporary decrease in the star's brightness," Kunimoto said. "By finding these dips, known as transits, you can start to piece together information about the planet, such as its size and how long it takes to orbit." Kunimoto also collaborated with UBC alumnus Henry Ngo to obtain razor-sharp follow-up images of some of her planet-hosting stars with the Near InfraRed Imager and Spectrometer (NIRI) on the Gemini North 8-metre Telescope in Hawaii. "I took images of the stars as if from space, using adaptive optics," she said. "I was able to tell if there was a star nearby that could have affected Kepler's measurements, such as being the cause of the dip itself." In addition to the new planets, Kunimoto was able to observe thousands of known Kepler planets using the transit-method, and will be reanalysing the exoplanet census as a whole. "We'll be estimating how many planets are expected for stars with different temperatures," said Kunimoto's PhD supervisor and UBC professor Jaymie Matthews. "A particularly important result will be finding a terrestrial Habitable Zone planet occurrence rate. How many Earth-like planets are there? Stay tuned."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |