. 24/7 Space News .
SPACE MEDICINE
Tiny lab on a chip
by Staff Writers
Osaka, Japan (SPX) Jun 29, 2022

Schematic diagram and photograph of the newly developed terahertz (THz) biochemical chip. The chip is made of GaAs, a nonlinear optical crystal, and is composed of five metamaterial units and a single microchannel on the surface. By irradiating with a femtosecond laser from the back surface of the crystal, a point THz light source is generated to interact with the solution.

Scientists from the Institute of Laser Engineering at Osaka University created a prototype terahertz optical spectroscopy system with a sensing area equivalent to the cross-sectional area of just five human hairs.

By measuring the shift in peak transmittance wavelength of a terahertz radiation source, the concentration of even trace dissolved contaminants in a tiny drop of water can be measured. This work may lead to portable sensors for applications such as the early detection of diseases, drug development, and water pollution monitoring.

Lab-on-a-chip technology is an exciting area of research. The ability to test patient samples at the bedside, or monitor water quality out in the field, with a portable monitoring device is very attractive. However, achieving strong sensitivity to the concentration of target analytes of interest can be difficult, especially when samples consist of very tiny volumes of liquid.

Now, a team of researchers at Osaka University has used a proprietary terahertz radiation source in a microfluidic chip containing a metamaterial structure to quantify the amount of trace contamination in water.

"Using this lab-on-a chip system, we could detect minute changes in the concentration of trace amounts of ethanol, glucose, or minerals in water by measuring the shift in the resonance frequencies," first author Kazunori Serita says.

The "I-design" consists of a metallic strip with a micrometer-sized gap sandwiched by other metallic strips. It is periodically arrayed in a row of five units, which formed a kind of "meta-atom," in which peak optical transmittance varied based on the presence of trace contamination by dissolved molecules.

This device is an application of the point terahertz source technology previously developed at Osaka University. A tiny source of terahertz light was generated by the irradiation spot of a femtosecond-pulse laser beam that induces a tightly confined electric-field mode at the gap regions. It then modifies the resonance frequency when a microchannel fabricated in the space between the metallic strips is filled with the sample solution.

"We succeeded in detecting just 472 attomoles of solutes in solutions with volumes of less than 100 picoliters, which is an order of magnitude better than existing microfluidic chips," senior author Masayoshi Tonouchi says. This work can lead to significant improvements in portable sensing, both in terms of sensitivity and the amount of liquid required.

Research Report:"I-design terahertz microfluidic chip for attomole-level sensing"


Related Links
Osaka University
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
Human's motion perception revealed by spaceflight: study
Beijing (XNA) May 24, 2022
Spaceflight, apart from exploring the unknown universe, can also help us, the inhabitants of Earth, to understand how gravity is affecting our brain in its visual perception. Humans have evolved under the constant influence of gravity, though normally we don't notice it. Human brains are selectively tuned to movement patterns initiated by living organisms like our peers, while turning the stimulus upside down can severely impede their detection and recognition. However, to what extent ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Rocket Lab's Lunar Photon completes 6th orbital raise preps for final Earth-escape burn

How scientist proposed a novel Kalman filter for target tracking in space

Rocket Lab launches CAPSTONE microsat to test new lunar orbit design for NASA

Northrop Grumman's Cygnus reboosts Space Station

SPACE MEDICINE
SES's C-band satellite launched onboard SpaceX Falcon 9

Virgin Orbit establishes sew Brazilian subsidiary; now licensed for launch operations in Alcantara

NASA completes Wet Dress Rehearsal, moves forward toward launch

Virgin Orbit on target for next launch window to open June 29

SPACE MEDICINE
My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Help NASA scientists find clouds on Mars

Digging into our new drill hole: Sols 3517-3518

NASA's Curiosity takes inventory of key life ingredient on Mars

SPACE MEDICINE
Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

SPACE MEDICINE
SES-22 set to launch on Falcon 9 June 29

Inmarsat report calls for enhanced debris mitigation and stronger regulations in space

Beyond Gravity launches its own start-up program "Launchpad"

A modern space race needs to be built on sustainability

SPACE MEDICINE
Quantum sensor can detect electromagnetic signals of any frequency

California passes sweeping law to reduce non-recyclable plastic

Single-atom tractor beams power chemical catalysis

GMV cements leadership in collision avoidance operations automation and coordination in Europe

SPACE MEDICINE
Life in the Earth's interior as productive as in some ocean waters

Long-term liquid water also on non-Earth-like planets

Ancient microbes may help us find extraterrestrial life forms

A novel crystal structure sheds light on the dynamics of extrasolar planets

SPACE MEDICINE
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.