. | . |
Time crystals lead researchers to future computational work by Staff Writers Tokyo, Japan (SPX) Oct 27, 2020
Time crystals sound like something out of science fiction, but they may be the next major leap in quantum network research. A team based in Japan has proposed a method to use time crystals to simulate massive networks with very little computing power. They published their results on October 16 Science Advances. First theorized in 2012 and observed in 2017, time crystals are arrangements of matter that repeats in time. Normal crystals, such as diamonds or salt, repeat their atomic self-organization in space, but do not show any regularity in time. Time crystals self-organize and repeat their patterns in time, meaning their structure changes periodically as time progresses. "The exploration of time crystals is a very active field of research and several varied experimental realizations have been achieved," said paper author Kae Nemoto, professor in the principles of informatics research division at the National Institute of Informatics. "Yet an intuitive and complete insight of the nature of time crystals and their characterization, as well as a set of proposed applications, is lacking. In this paper, we provide new tools based on graph theory and statistical mechanics to fill this gap." Nemoto and her team specifically examined how the quantum nature of time crystals - how they shift from moment to moment in a predictable, repeating pattern - can be used to simulate large, specialized networks, such as communication systems or artificial intelligence. "In the classical world, this would be impossible as it would require a huge amount of computing resources," said Marta Estarellas, one of the first authors of the paper from the National Institute of Informatics. "We are not only bringing a new method to represent and understand quantum processes, but also a different way to look at quantum computers." Quantum computers can store and manipulate multiple states of information, meaning they can process huge data sets with relatively little power and time by solving several potential outcomes at the same time, rather than one by one like classical computers. "Can we use this network representation and its tools to understand complex quantum systems and their phenomena, as well as identify applications?" Nemoto asked. "In this work, we show the answer is yes." The researchers plan to explore different quantum systems using time crystals after their approach is experimentally tested. With this information, their goal is to propose real applications for embedding exponentially large complex networks in a few qubits, or quantum bits. "Using this method with several qubits, one could simulate a complex network the size of the entire worldwide internet," Nemoto said.
UCI materials scientists discover design secrets of nearly indestructible insect Irvine CA (SPX) Oct 22, 2020 With one of the more awe-inspiring names in the animal kingdom, the diabolical ironclad beetle is one formidable insect. Birds, lizards and rodents frequently try to make a meal of it but seldom succeed. Run over it with a car, and the critter lives on. The beetle's survival depends on two key factors: its ability to convincingly play dead and an exoskeleton that's one of the toughest, most crush-resistant structures known to exist in the biological world. In a paper published in Nature, researche ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |