. | . |
JPL meets unique challenge, delivers radar hardware for Jupiter Mission by Staff Writers Pasadena CA (JPL) Sep 22, 2020
Engineers at NASA's Jet Propulsion Laboratory met a significant milestone recently by delivering key elements of an ice-penetrating radar instrument for an ESA (European Space Agency) mission to explore Jupiter and its three large icy moons. While following the laboratory's stringent COVID-19 Safe-at-Work precautions, JPL teams managed to build and ship the receiver, transmitter, and electronics necessary to complete the radar instrument for the Jupiter Icy Moons Explorer (JUICE) mission. Set to launch in 2022, JUICE will orbit Jupiter for three years, perform multiple flybys of moons Callisto and Europa, then orbit Ganymede. The spacecraft will observe Jupiter's atmosphere up close as well as analyze the surfaces and interiors of the three moons, which are believed to harbor liquid water under their icy crusts. One of 10 instruments, the radar is key to exploring those moons. Called Radar for Icy Moon Exploration, or RIME, it sends out radio waves that can penetrate the surface up to 6 or 7 miles (10 kilometers) and collects data on how the waves bounce back. Some of the waves penetrate the crust and reflect off subsurface features - and the watery interiors - enabling scientists to "see" underneath. In the case of Europa, which is believed to have a global ocean beneath its crust, the radar data will help gauge the thickness of the ice. NASA's Europa Clipper mission, set to launch in the mid-2020s, will arrive around the same time as JUICE and collect complementary science as it performs multiple flybys of Europa.
Building RIME During a Pandemic "I'm really impressed that the engineers working on this project were able to pull this off," said JPL's Jeffrey Plaut, co-principal investigator of RIME. "We are so proud of them, because it was incredibly challenging. We had a commitment to our partners overseas, and we met that - which is very gratifying." In mid-March, engineers had just finished building the transmitter and its corresponding set of electronics. They were about to run an exhaustive regimen of tests to ensure the equipment would survive deep space - including vibration, shock, and thermal vacuum testing, which simulates the vacuum and extreme temperatures of space. Then the coronavirus pandemic forced most JPL's employees to work remotely. The tests would have to wait. About a month later, RIME engineers and technicians came back on-site after JPL put in place its Safe-at-Work protocols, including - among other measures - social distancing, mask-wearing, and frequent hand-washing. Now the team had a schedule crunch, plus other new challenges. As one of the first teams to re-enter JPL (most employees continue to work remotely), they needed to figure out new ways to do things that used to be easy. Just finding screws and other fasteners, when the usual supply shop wasn't open, became a puzzle to solve. Project Manager Don Heyer had new human challenges as well. "We needed to keep people not just safe - but comfortable being there," Heyer said. "That was important, because otherwise they wouldn't be able to do the job successfully." The key to moving forward was clearly defining next steps, he said. At the same time, they needed to make safety requirements thorough, but not too much of an additional burden for the staff. It was a learning experience, he said. "But we got there pretty quickly."
Jupiter's moons could be warming each other Tucson AZ (SPX) Sep 11, 2020 Jupiter's moons are hot. Well, hotter than they should be, for being so far from the sun. In a process called tidal heating, gravitational tugs from Jupiter's moons and the planet itself stretch and squish the moons enough to warm them. As a result, some of the icy moons contain interiors warm enough to host oceans of liquid water, and in the case of the rocky moon Io, tidal heating melts rock into magma. Researchers previously believed that the gas giant Jupiter was responsible for most of the ti ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |