. | . |
Ultra Safe Nuclear Technologies delivers advanced Nuclear Thermal Propulsion Design to NASA by Staff Writers Seattle WA (SPX) Oct 20, 2020
Ultra Safe Nuclear Technologies (USNC-Tech) has delivered a design concept to NASA as part of a study on nuclear thermal propulsion (NTP) flight demonstration. NTP technology provides unprecedented high-impulse thrust performance for deep space missions such as crewed missions to the moon and Mars. The NASA-sponsored study, managed by Analytical Mechanics Associates (AMA), explored NTP concepts and designs enabling deep space travel. "We want to lead the effort to open new frontiers in space, and do it quickly and safely," said Dr. Michael Eades, principal engineer at USNC-Tech. "Our engine maximizes the use of proven technology, eliminates failure modes of previous NTP concepts, and has a specific impulse more than twice that of chemical systems." Advancements in nuclear fuel design and passive safety measures pioneered by Ultra Safe Nuclear (USNC, USNC-Tech's parent company) with Fully Ceramic Micro-encapsulated (FCM) fuel enabled USNC-Tech to create a novel NTP concept with specialized performance capabilities. The enhanced safety characteristics and design flexibility of the USNC-Tech concept is a critical step forward in achieving extensibility of NTP systems to deep-space missions. "Key to USNC-Tech's design is a conscious overlap between terrestrial and space reactor technologies," explained Dr. Paolo Venneri, CEO of USNC-Tech. "This allows us to leverage the advancements in nuclear technology and infrastructure from terrestrial systems and apply them to our space reactors." A prime example of this is the nuclear fuel at the core of the USNC-Tech NTP concept. The USNC-Tech NTP concept uses a specialized variation of USNC's FCM fuel, featuring high-assay low-enriched Uranium (HALEU) ZrC-encapsulated fuel particles. This variation enables high-temperature operation while maintaining the integrity of the fuel. FCM fuel is extremely rugged, enabling a new family of inherently safe space-optimized reactor designs that ensure astronaut safety and environmental protection. Using low quantities of HALEU, this unique NTP concept delivers high thrust and specific impulse previously only achievable through high-enriched uranium. Furthermore, FCM fuel leverages pre-existing supply chains and manufacturing facilities used by terrestrial nuclear reactor developers, reducing production risks and enabling sustainable industry involvement. In an NTP system, exceptionally high levels of thrust are achieved by passing propellant through a specialized reactor core, reducing interplanetary transfer durations. Additionally, NTP systems achieve expanded payload mass capabilities due to their two-fold increase in specific impulse compared with chemical propulsion systems. As a result, NTP offers an entirely new mode of in-space transportation, enabling rapid movement of high-mass spacecraft architectures to deep space destinations (current NTP designs could deliver a crew to Mars in as few as three months) and a new, highly agile degree of cislunar mobility. If designed with commercial sustainability in mind, modern NTP systems can offer these benefits to commercial space entities in addition to government agencies like NASA and the DOD, enabling new business opportunities such as rapid orbital logistics services. USNC-Tech prioritizes technologies and architectures that enable commercial manufacturing and near-term deployment while meeting safety and mission requirements. The NTP concept delivered by USNC-Tech was designed to enable a successful near-term system demonstration and reduce barriers to full-scale deployment.
Demonstrator masters flight sequences for reusable rocket stages Bucharest (ESA) Oct 14, 2020 A crucial part of rocket reusability is a smooth return and landing. ESA has helped Romania's National Institute for Aerospace Research, INCAS, to demonstrate vertical takeoff, short hovering and landing manoeuvres using a small-scale flight demonstrator. This 60 kg platform has landing legs and is powered by a turbo jet 0.9 kN-class engine. It is capable of carrying payloads totalling 5 kg. The demonstrator technology vehicle (DTV) was tested this summer at INCAS in Bucharest. Tethers were ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |