. 24/7 Space News .
ENERGY TECH
The secret life of batteries
by Julie Stewart for UD News
Newark DE (SPX) Feb 20, 2019

Koffi Pierre Yao, assistant professor of mechanical engineering at the University of Delaware, uncovers novel insights about lithium ion batteries.

You probably use batteries every single day, but do you actually understand how they work? Koffi Pierre Yao, a new assistant professor of mechanical engineering at the University of Delaware, is uncovering novel insights about what happens inside the batteries that power our smartphones, laptops, and electric vehicles. He plans to use this knowledge to develop faster-charging batteries that make electric vehicles the go-to automobiles for drivers.

Several of today's electric vehicles, such as the Tesla Model 3 and Nissan Leaf, run on lithium-ion batteries. But it takes inconveniently too long to recharge those vehicles when you can fill up your gas tank in the time it takes to pick up gas-station coffee. In a lithium-ion battery, positively charged lithium ions move through the electrode to deliver energy.

Scientists all over the world do time-consuming research on lithium-ion batteries in an attempt to optimize these power units. "Usually people will make an electrode, test it, make another one, test it, and so on, and it's kind of a serial process," said Yao.

Instead, Yao uses physical probes to look inside batteries while they work and develop a direct physical understanding of how lithium ions flow within batteries. When a battery is charging, the lithium flows unevenly in a way that's difficult to measure. Yao started working on this while he was a postdoctoral associate at Argonne National Laboratory (ANL), a position he held from 2016 until 2018, when he joined UD's faculty.

In a new paper published in Energy and Environmental Science, a journal published by the Royal Society of Chemistry, Yao describes how he and his colleagues at ANL used X-rays to get a micron-scale movie of how lithium distributes within the electrode while lithium-ion batteries are running.

"We put an industrial-grade battery under an X-ray beam and mapped the distribution of the lithium within the electrodes," he said.

Yao and his colleagues knew that the lithium did not distribute homogeneously. Imagine a group of people running through a small doorway. It takes time for people to spread out into the interior of the room; therefore, there will be crowding at the entry point. That's similar to how lithium moves through the electrode. Still, Yao and his colleagues were surprised at the extent to which lithium scattered inhomogeneously.

The goal is to use this knowledge to reduce testing time and speed up the research and development (R and D) process for these batteries.

In another new paper published in Advanced Energy Materials, Yao describes how he and his colleagues used X-rays to quantify the activity in a silicon-graphite electrode. Cell phone batteries typically contain graphite, but silicon offers some potential benefits over graphite.

"We're interested in silicon because it can increase the capacity of the electrode by a factor of 10 compared to graphite," he said. However, silicon is less stable than graphite and degrades faster, so a blend of the two may prove to be a viable solution. "Some of the lithium goes into the graphite, and some goes into the silicon," he said.

Yao and his colleagues sought to discover exactly where the lithium ions traveled within this blended electrode.

"It's something people haven't previously been able to do in the literature," Yao said. "We provide a clear picture of which of silicon and graphite plays host to lithium at any point in time. Now we can go forward and manipulate this pattern to stabilize the cycling." This knowledge can help Yao in his quest to design novel particles to make faster-charging and higher energy batteries.

At UD, Yao plans to expand upon his research on batteries with his colleagues at the Center for Fuel Cells and Batteries and more. Yao received his master's and doctoral degrees in mechanical engineering from the Massachusetts Institute of Technology (MIT) and his bachelor's degree in mechanical engineering at UD. As an undergraduate at UD, he was mentored by Ajay Prasad, Engineering Alumni Distinguished Professor and Chair of Engineering, who introduced him to electric cars and electrochemistry, the science behind them.

Research paper


Related Links
University of Delaware
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Shell buys German battery maker Sonnen
London (AFP) Feb 15, 2019
Anglo-Dutch oil giant Royal Dutch Shell agreed Friday to buy German rechargeable battery maker Sonnen, as the sector eyes growing demand for cleaner energy. Shell, which already invested in the German start-up in May 2018, revealed in a statement that it will buy 100 percent of Sonnen for an undisclosed amount. Sonnen, which makes lithium-ion batteries for storing wind and solar power, was founded in 2010 and has since grown rapidly to become a dominant player in Europe. "Sonnen is one of th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Space behaviour focus of Expedition 58

Technology developed in Brazil will be part of ISS

Astronauts optimistic for ISS launch after botched flight

Russia sketches out "Unpiloted Tourist Space Yacht" concept that would graze space

ENERGY TECH
SpaceX releases Israeli moon lander, pair of satellites into orbit

Russia Completes Engine Tests of Soyuz Rocket's 2nd Stage Using New Fuel

Raptor engine beats Russian RD-180 record in combustion chamber pressure says Musk

Arianespace orbits two telecommunications satellites on first Ariane 5 launch of 2019

ENERGY TECH
Weather on Mars: Chilly with a chance of 'dust devils'

InSight is the Newest Mars weather service

Northwestern study of analog crews in isolation reveals weak spots for Mission to Mars

Mars Rover Opportunity Ends Mission After 15 Years

ENERGY TECH
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

ENERGY TECH
Arianespace to orbit the first six satellites of the OneWeb constellation

United Launch Services, SpaceX awarded satellite contracts

RIT faculty part of NASA's $242 million SPHEREx mission

18m pounds for OneWeb satellite constellation to deliver global communications

ENERGY TECH
NASA set to demonstrate x-ray communications in space

Blacksmiths keep alive the flame of China's molten steel 'fireworks'

Malaysia to end bauxite mining ban despite environment fears

New technology captures movement of quantum particles with unprecedented resolution

ENERGY TECH
NIST 'Astrocomb' Opens New Horizons for Planet-Hunting Telescope

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

NASA Selects New Mission to Explore Origins of Universe

New NASA research consortium to tackle life's origins

ENERGY TECH
Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover

New Horizons' evocative farewell glance at Ultima Thule

Sodium, Not Heat, Reveals Volcanic Activity on Jupiter's Moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.