24/7 Space News
The secret life of an electromagnon
Hiroki Ueda, first author of the paper, working at the new Furka experimental at SwissFEL Here, using soft X-rays, Ueda and colleagues could reveal the motion of the spins during an electromagnon at Furka, complementing hard X-ray measurements of lattice vibrations made at the Bernina experimental station.
The secret life of an electromagnon
by Miriam Arrell
Wurenlingen, Switzerland (SPX) Nov 29, 2023

Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments at the X-ray free electron laser SwissFEL. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.

Within the atomic lattice of a solid, particles and their various properties cooperate in wave like motions known as collective excitations. When atoms in a lattice jiggle together, the collective excitation is known as a phonon. Similarly, when the atomic spins - the magnetisation of the atoms -move together, it's known as a magnon.

The situation gets more complex. Some of these collective excitations talk to each other in so-called hybrid excitations. One such hybrid excitation is an electromagnon. Electromagnons get their name because of the ability to excite the atomic spins using the electric field of light, in contrast to conventional magnons: an exciting prospect for numerous technical applications. Yet their secret life at an atomic level is not well understood.

It's been suspected that during an electromagnon the atoms in the lattice wiggle and the spins wobble in an excitation that is essentially a combination of a phonon and a magnon. Yet since they were first proposed in 2006, only the spin motion has ever been measured. How the atoms within the lattice move - if they move at all - has remained a mystery. So too has an understanding of how the two components talk to each other.

Now, in a sophisticated series of experiments at the Swiss X-ray free-electron laser SwissFEL, researchers at PSI have added these missing pieces to the jigsaw. "With a better understanding of how these hybrid excitations work, we can now start to look into opportunities to manipulate magnetism on an ultrafast timescale," explains Urs Staub, head of the Microscopy and Magnetism Group at PSI, who led the study.

First the atoms, then the spins
In their experiments at SwissFEL, the researchers used a terahertz laser pulse to induce an electromagnon in a crystal of multiferroic hexaferrite. Using time-resolved X-ray diffraction experiments they then took ultrafast snapshots of how the atoms and spins moved in response to the excitation. With this, they proved both that the atoms within the lattice really do move in an electromagnon and also revealed how energy is transferred between lattice and spin.

A striking outcome of their study was that the atoms move first, with the spins moving fractionally later. When the terahertz pulse strikes the crystal, the electric field pushes the atoms into motion, initiating the phononic part of the electromagnon. This motion creates an effective magnetic field that subsequently moves the spins.

"Our experiments revealed that the excitation does not move the spins directly. It was previously unclear whether this would be the case," explains Hiroki Ueda, beamline scientist at SwissFEL and the first author of the publication.

Going further, the team could also quantify how much energy the phononic component acquires from the terahertz pulse and how much energy the magnonic component acquires through the lattice. "This is an important piece of information for future applications in which one seeks to drive the magnetic system," adds Ueda.

One free electron laser, two beamline, two crystal modes
Key to their discovery was the ability to measure both the atomic motions and the spins in complementary time-resolved X-ray diffraction experiments at the hard and soft X-ray beamlines of SwissFEL.

Using hard X-rays at the Bernina experimental station, the team studied the motion of atoms within the lattice. The recently developed set-up of the experimental station including specially designed sample chambers allows unique ultrafast measurements using terahertz fields in solids at very low temperatures.

To study the motion of the spins, the team used soft X-rays, which are more sensitive to changes in magnetic systems. These experiments were performed at the Furka experimental station, which recently entered user operation. By tuning the X-ray energy to a resonance in the material, they could focus specifically on the signal from the spins - information that is usually masked.

"The measurement of the phononic part alone at Bernina was a major step forward. To also be able to access the magnetic motion with Furka is an experimental possibility that exists almost nowhere else in the world," comments Staub.

Fundamental principle is important for our understanding of other physical processes
Ueda, Staub and colleagues have provided an understanding of the microscopic origin of an electromagnon. This understanding is important not only to this physical process, but in a more general sense.

The fundamental interactions between lattice and spins underpin many physical effects that give rise to unusual - and potentially very useful - material properties: for example, high temperature superconductivity. Only with a better understanding of such effects comes control.

Research Report:Non-equilibrium dynamics of spin-lattice coupling

Related Links
Paul Scherrer Institute
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Compact accelerator technology achieves major energy milestone
Austin TX (SPX) Nov 28, 2023
Particle accelerators hold great potential for semiconductor applications, medical imaging and therapy, and research in materials, energy and medicine. But conventional accelerators require plenty of elbow room - kilometers - making them expensive and limiting their presence to a handful of national labs and universities. Researchers from The University of Texas at Austin, several national laboratories, European universities and the Texas-based company TAU Systems Inc. have demonstrated a compact ... read more

NASA shuttle astronaut, scientist Mary Cleave remembered as 'trailblazer'

U.S. and Saudi Arabia explore space for peaceful purposes

NASA awards $2.3 million to study growing food in lunar dust

Earth bacteria could make lunar soil more habitable for plants

NASA, small companies eye new cargo delivery, heat shield technologies

Firefly Aerospace completes first Miranda Engine hot fire test

First launch of Europe's Ariane 6 rocket planned for mid-2024

Boosting rocket reliability at the material level

Farewell, Solar Conjunction 2023: Sols 4023-4024

Was There Life on Mars

NASA Orbiter snaps stunning views of Mars horizon

Perseverance's Parking Spot

China's Lunar Samples on Display in Macao to Inspire Future Explorers

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

Embry-Riddle's Innovative Mission Control Lab prepares students for booming space sector

Ovzon and SSC close to sealing satellite communication contract worth $10M

A major boost for space skills and research in North East England

GalaxySpace to boost mobile broadband with new-gen satellite technology

'Grand Theft Auto' in numbers

Building blocks? Cutting pollution from steel, concrete and aluminium

Developing a superbase-comparable BaTiO3-xNy oxynitride catalyst

Project will look for rare-earth elements in Southeast Alaska seaweed

Discovery of planet too big for its sun throws off solar system formation models

Minimalist or maximalist? The life of a microbe a mile underground

Interstellar ice may hold the key to understanding life's origins

First extragalactic exoplanet disc spotted outside of the Milky Way

Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.