24/7 Space News
EXO WORLDS
Minimalist or maximalist? The life of a microbe a mile underground
Prof. Magdalena Osburn removes a sample during a site visit in August. Sanford Underground Research Facility.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
Minimalist or maximalist? The life of a microbe a mile underground
by Amanda Morris for Northwestern Now
Evanston IL (SPX) Nov 29, 2023

If you added up all the microbes living deep below Earth's surface, the amount of biomass would outweigh all life within our oceans. But because this abundant life is so difficult to reach, it is widely understudied and incompletely understood. By accessing the deep underground through a former goldmine-turned-lab in South Dakota's Black Hills, Northwestern University researchers have pieced together the most complete map to date of the elusive and unusual microbes beneath our feet.

In total, the researchers characterized nearly 600 microbial genomes - some of which are new to science. Out of this batch, Northwestern geoscientist Magdalena Osburn, who led the study, says most microbes fit into one of two categories: "minimalists," which have streamlined their lives by eating the same thing all day, every day; and "maximalists," which are ready and prepared to greedily grab any resource that might come their way.

The study has been accepted by the journal Environmental Microbiology. An early version of the manuscript is now available online.

Not only does the new study expand our knowledge of the microbes living deep within the subsurface, it also hints at potential life we someday might find on Mars. Because the microbes live on resources found within rocks and water that are physically separate from the surface, these organisms also potentially could survive buried within Mars' dusty red depths.

"The deep subsurface biosphere is enormous; it's just a vast amount of space," said Osburn, an associate professor of Earth and planetary science at Northwestern's Weinberg College of Arts and Sciences. "We used the mine as a conduit to access that biosphere, which is difficult to reach no matter how you approach it. The power of our study is that we ended up with a lot of genomes, and many from understudied groups. From that DNA, we can understand which organisms live underground and learn what they could be doing. These are organisms that we often can't grow in the lab or study in more traditional contexts. They are often called 'microbial dark matter' because we know so little about them."

A portal into the Earth's crust
For the past 10 years, Osburn and her students have regularly visited the former Homestake Mine in Lead, South Dakota, to collect geochemical and microbial samples. Now called the Sanford Underground Research Facility (SURF), the deep underground laboratory hosts a number of research experiments across a range of disciplines. In 2015, Osburn established six experimental sites, collectively called the Deep Mine Microbial Observatory, throughout SURF.

"The mine is now a facility dedicated to underground science," Osburn said. "Researchers mostly perform high-energy particle physics experiments. But they also let us study the deep biospheres that live within the rocks. We can set up experiments in a controlled, dedicated site and check on them months later, which we would not be able to do in an active mine."

By boring holes into rocks inside the mine, Osburn and her team capture fracture fluids, composed of water and dissolved gases. Some of these fluids are up to 10,000 years old and are teeming with microbial life that is otherwise isolated and ignored.

In the new study, Osburn and her team collected eight fluid samples, gathered at various points throughout the mine - spanning depths from the surface all the way to about 1.5 kilometers deep. The range of samples provide a window into a gradient of microbial life with depth.


Minimalists v. maximalists Back in Osburn's lab at Northwestern, she and her team sequenced the microbial DNA held within the samples. Of the nearly 600 genomes characterized, microbes represented 50 distinct phyla and 18 candidate phyla.

Out of this diverse community of microbes, Osburn discovered that, at some point, each lineage gravitates to a life-defining trajectory: become a minimalist or a maximalist.

"Man of the microbes we found were either minimalists: ultra-streamlined with one job that it does very well alongside a close consortium of collaborators, or it can do a little bit of everything," Osburn said. "These maximalists are ready for every resource that comes along. If there is an opportunity to make some energy or transform a biomolecule, it is prepared. By looking at its genome, we can tell it has many options. If nutrients are scarce, it can just make its own."

The minimalists, Osburn explained, typically share resources with friends, which also have specialized jobs.

"Some of these lineages don't even have genes to make their own lipids, which blows my mind," Osburn said. "Because how can you make a cell without lipids? It's sort of like how humans can't make every amino acid, so we eat protein to get the amino acids that we cannot make on our own. But this is on a more extreme scale. The minimalists are extreme specialists, and all together, they make it work. It's a lot of sharing and no duplication of effort."

Insights on Earth and beyond
As we imagine life beyond our Earth, Osburn said these underground microbes might provide clues for what potentially could be living elsewhere.

"I get really excited when I see evidence of microbial life, doing its thing without us, without plants, without oxygen, without surface atmosphere," she said. "These kinds of life very well could exist deep within Mars or in the oceans of icy moons right now. The forms of life tell us about what might live elsewhere in the solar system."

And, they have implications for our own planet. As industry looks for locations for long-term carbon storage, for example, many companies are exploring the possibilities for injecting carbon dioxide deep into the ground.

As we explore those options, Osburn reminds us not to forget the microbes.

"We need to be cognizant of life in the deep subsurface and how human activity, like mining and carbon storage, could affect it," she said. "If we store carbon dioxide underground, there are microbes that could metabolize it to make methane, for example. There is a biosphere underground that, depending on how it's perturbed, has potential to affect the surface."

Research Report:A metagenomic view of novel microbial and metabolic diversity found within the deep terrestrial biosphere at DeMMO: A microbial observatory in South Dakota, USA

Related Links
Deep Mine Microbial Observatory
Sanford Underground Research Facility
Northwestern University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Supporting the search for alien life by exploring geologic faulting on icy moons
Manoa HI (SPX) Nov 16, 2023
On the surface of many of the icy moons in our solar system, scientists have documented strike-slip faults, those that occur when fault walls in the ground's crust move past one another sideways, as is the case at the San Andreas fault in California. Two recently published studies led by University of Hawai'i at Manoa earth and space scientists document and reveal the mechanisms behind these geologic features on the largest moon of Saturn, Titan, and Jupiter's largest moon, Ganymede. Conducting th ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
NASA shuttle astronaut, scientist Mary Cleave remembered as 'trailblazer'

NASA awards $2.3 million to study growing food in lunar dust

U.S. and Saudi Arabia explore space for peaceful purposes

Earth bacteria could make lunar soil more habitable for plants

EXO WORLDS
NASA Tests In-Flight Capability of Artemis Moon Rocket Engine

NASA, small companies eye new cargo delivery, heat shield technologies

Heat Shield demo passes the test dubbed 'Just flawless'

Boosting rocket reliability at the material level

EXO WORLDS
Farewell, Solar Conjunction 2023: Sols 4023-4024

California lawmakers ask NASA not to cut Mars budget

Was There Life on Mars

Perseverance's Parking Spot

EXO WORLDS
China's Lunar Samples on Display in Macao to Inspire Future Explorers

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

EXO WORLDS
Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

A major boost for space skills and research in North East England

Ovzon and SSC close to sealing satellite communication contract worth $10M

GalaxySpace to boost mobile broadband with new-gen satellite technology

EXO WORLDS
Air Force awards UTEP Grant to safeguard assets in space

China launches tech-experiment satellite

A satellite's death spiral

Beyond Gravity unveils reusable payload fairing concept

EXO WORLDS
First extragalactic exoplanet disc spotted outside of the Milky Way

Discovery of planet too big for its sun throws off solar system formation models

Minimalist or maximalist? The life of a microbe a mile underground

Alien haze, cooked in a lab, clears view to distant water worlds

EXO WORLDS
Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.