. 24/7 Space News .
TECH SPACE
Technique inspired by lace making could someday weave structures in space
by Staff Writers
Princeton NJ (SPX) Jun 06, 2021

Researchers created structures using flexible strips.

Lauren Dreier was paging through a 19th century book by the German architect Gottfried Semper when she spotted some intriguing patterns inspired by lace. A professional artist and designer who often incorporates technology into her work, Dreier, who is also a doctoral student at the School of Architecture at Princeton University, decided to recreate the printed illustrations in 3D.

She grabbed ribbon-like plastic material she had been experimenting with in her studio, bending and connecting the semi-rigid strips. To Dreier's surprise, the structure she built assumed a bumpy geometry, with four distinct hills and valleys.

"I thought it would make a dome, but it was this unusual shape," Dreier said. Curious to know what caused this unexpected twist, she reached out to Sigrid Adriaenssens, an associate professor in Princeton's Department of Civil and Environmental Engineering. Adriaenssens couldn't explain it, either, but she, too, was intrigued. She proposed a joint investigation to find out what was behind the strange structural mechanics.

Dreier's discovery wound up leading to the creation of a reconfigurable structure the researchers termed a bigon ring. By tweaking the specific design of the structure's patterns, the team was able to produce multiple geometries that arise from different looping behaviors.

According to a paper describing the findings in the Journal of the Mechanics and Physics of Solids, the numerical framework behind the discovery can be applied to any general elastic rod network, whether made of thread, bamboo or plastic. It could also lead to the creation of new products and technologies that are capable of changing shape to improve performance under variable conditions from spacecraft to wearable technology.

"Drawing inspiration from patterns in lacing, I think we can say nobody's done that before," Adriaenssens said. "Some of these behaviors were very unexpected, and just by adjusting the angle or the width, you get a totally different behavior."

To investigate the physics behind these observations, Dreier worked closely with several collaborators, including Tian Yu, a postdoctoral researcher in Adriaenssens' lab. "This is my first time working with an artist, and I never expected to work on a project inspired by lace," Yu said. "I'm fascinated by the mechanics part of this project."

Unlike traditional lace makers who use soft threads twisted together, the researchers arranged their creations into loose, looping formations.

"It's all about creating excess space between the nodes," Dreier said. The team started by making closed structures called bigons by fixing the ends of two initially straight strips at a certain angle, creating eye- or almond-like forms. Similar to metal hair clips from the 1990s, the bigons exhibited bistability, or two different stable shapes that the structures could toggle between when slight pressure was applied.

From there, the researchers arranged multiple bigons into a chain, and then a loop by connecting their ends. The bistable bigons together created an overall structure that could form numerous possible geometries. The structures were multistable, meaning they were made up of a collection forms each of which could be stable independent of the others.

Bigon rings, as they called these new forms, sometimes exhibited a similar folding behavior as a bandsaw blade, looping back on themselves. But their behavior could also be tuned by adjusting the intersection angle and the aspect ratio of the strips that composed the bigons, and by changing the number of bigons that made up the ring.

As Dreier worked on building these structures, Yu created a numerical model specific to them using Kirchhoff rod equations for how a thin, elastic rod behaves when loaded with forces and displacements. The researchers were able to confirm the accuracy of the model by taking measurements from Dreier's physical creations and comparing the results.

The computational model also made it possible to identify different configurations that the bigons or bigon rings might be able to take theoretically. The researchers then tested those mathematical predictions through the physical models to see which equilibria were stable and which were not. "A lot of back and forth came from Tian going deep into the data and saying, 'If you make a six-bigon ring at such-and-such an angle, what happens?'" Dreier said.

The team eventually produced a new numerical model that captures multistable behavior, and that the researchers say can be applied to other studies that examine the mechanics of general interlaced elastic networks.

In future work, the team plans to conduct a more extensive investigation of the many shapes that bigon-based structures are capable of forming, and how to best achieve specific target shapes. Eventually, their findings could lead to new designs for materials that need to be packed to take up as little room as possible, but that assume a much larger form when unpacked. "For example, materials and structures that go into space have to be folded into a bundle, put in a rocket and then have to expand into as large a size as possible," Adriaenssens said. "Some of these combinations of parameters do that."

Other potential real-world applications include novel soft robotic arms, toys and wearable technology. The latter, for example, could include special textiles that stiffen to support someone's arm in a certain position, and loosen in others. "It can envelop things or not, stiffen or not," Adriaenssens said. "It can have many functions."

In addition to the practical applications of the work, the project also demonstrates the largely untapped value of interdisciplinary collaboration between artists and engineers. While art tends to be driven by intuition and feelings that operate outside of the realm of scientific thinking, "it can lead to discoveries of some interesting phenomena," Dreier said. "I was really excited that these different worlds could come together in a very relevant way."

Research paper


Related Links
Princeton University, Engineering School
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
World's first digital fiber can collect, store, analyze data
Washington DC (UPI) Jun 3, 2021
Engineers have developed the world's first digital fiber, capable of capturing, storing and analyzing a variety of data. The breakthrough technology, detailed Thursday in the journal Nature Communications, could be paired with machine learning algorithms and used to make smart fabrics to record health data and aid medical diagnosis. "This work presents the first realization of a fabric with the ability to store and process data digitally, adding a new information content dimension to tex ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
TMC Technologies wins contract to support NASA's IV&V Program

Cyprus, Austria, Greece have EU's cleanest beaches: agency

NASA awards new spacecraft avionics development contract

Adventure-lovers defy gravity on the tallest Chinese TV tower

TECH SPACE
Axiom Space signs with SpaceX for 3 more private crew missions to ISS

California prepares for more West Coast space launches

NASA stacks elements for upper portion of Artemis II Core Stage

PLD Space receives ESA contract to study reusing MIURA 5 boosters

TECH SPACE
InSight Mars Lander Gets a power boost

NASA's Curiosity rover captures shining clouds on Mars

Surviving an in-flight anomaly: what happened on Ingenuity's 6th flight

Newly discovered glaciers could aid human survival on Mars

TECH SPACE
Tianzhou 2 docks with China's new station core module

Spacewalks planned for Shenzhou missions

China cargo craft docks with space station module

New advances inspire China's deep space exploration

TECH SPACE
Kleos Polar Vigilance Mission Satellites dispatched to Cape Canaveral for Launch

GomSpace wins contract to develop satellites for global air traffic management consortium

GMV supplies operations centre for the new generation of Yahsat satellites

European space program seeks first disabled astronaut

TECH SPACE
SpaceChain to test On-orbit Ethereum Multisignature Transaction Services on ISS

Technique inspired by lace making could someday weave structures in space

CityU scientists make a breakthrough towards solving the structural mystery of glass

Visualizing cement hydration on a molecular level

TECH SPACE
Scientists develop new molecular tool to detect alien life

Thirty year stellar survey cracks mysteries of galaxy's giant planets

Deep oceans dissolve the rocky shell of water-ice planets

Origins of life researchers develop a new ecological biosignature

TECH SPACE
Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

Jupiter antenna that came in from the cold

Experiments validate the possibility of helium rain inside Jupiter and Saturn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.