. 24/7 Space News .
OUTER PLANETS
Experiments validate the possibility of helium rain inside Jupiter and Saturn
by Staff Writers
Livermore CA (SPX) May 27, 2021

stock image only

Nearly 40 years ago, scientists first predicted the existence of helium rain inside planets composed primarily of hydrogen and helium, such as Jupiter and Saturn. However, achieving the experimental conditions necessary to validate this hypothesis hasn't been possible - until now.

In a paper published by Nature, scientists reveal experimental evidence to support this long-standing prediction, showing that helium rain is possible over a range of pressure and temperature conditions that mirror those expected to occur inside these planets.

"We discovered that helium rain is real, and can occur both in Jupiter and Saturn," said Marius Millot, a physicist at Lawrence Livermore National Laboratory (LLNL) and co-author on the publication. "This is important to help planetary scientists decipher how these planets formed and evolved, which is critical to understanding how the solar system formed."

"Jupiter is especially interesting because it's thought to have helped protect the inner-planet region where Earth formed," added Raymond Jeanloz, co-author and professor of earth and planetary science and astronomy at the University of California, Berkeley. "We may be here because of Jupiter."

The international research team, which included scientists from LLNL, the French Alternative Energies and Atomic Energy Commission, the University of Rochester and the University of California, Berkeley, conducted their experiments at the University of Rochester's Laboratory for Laser Energetics (LLE).

"Coupling static compression and laser-driven shocks is key to allow us to reach the conditions comparable to the interior of Jupiter and Saturn, but it is very challenging," Millot said. "We really had to work on the technique to obtain convincing evidence. It took many years and lots of creativity from the team."

The team used diamond anvil cells to compress a mixture of hydrogen and helium to 4 gigapascals, (GPa; approximately 40,000 times Earth's atmosphere). Then, the scientists used 12 giant beams of LLE's Omega Laser to launch strong shock waves to further compress the sample to final pressures of 60-180 GPa and heat it to several thousand degrees. A similar approach was key to the discovery of superionic water ice.

Using a series of ultrafast diagnostic tools, the team measured the shock velocity, the optical reflectivity of the shock-compressed sample and its thermal emission, finding that the reflectivity of the sample did not increase smoothly with increasing shock pressure, as in most samples the researchers studied with similar measurements.

Instead, they found discontinuities in the observed reflectivity signal, which indicate that the electrical conductivity of the sample was changing abruptly, a signature of the helium and hydrogen mixture separating. In a paper published in 2011, LLNL scientists Sebastien Hamel, Miguel Morales and Eric Schwegler suggested using changes in the optical reflectivity as a probe for the demixing process.

"Our experiments reveal experimental evidence for a long-standing prediction: There is a range of pressures and temperatures at which this mixture becomes unstable and demixes," Millot said. "This transition occurs at pressure and temperature conditions close to that needed to transform hydrogen into a metallic fluid, and the intuitive picture is that the hydrogen metallization triggers the demixing."

Numerically simulating this demixing process is challenging because of subtle quantum effects. These experiments provide a critical benchmark for theory and numerical simulations. Looking ahead, the team will continue to refine the measurement and extend it to other compositions in the continued pursuit of improving our understanding of materials at extreme conditions.

Research Report: Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions


Related Links
Lawrence Livermore National Laboratory
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Deep water on Neptune and Uranus may be magnesium-rich
Tempe AZ (SPX) May 18, 2021
While scientists have amassed considerable knowledge of the rocky planets in our solar system, like Earth and Mars, much less is known about the icy water-rich planets, Neptune and Uranus. In a new study recently published in Nature Astronomy, a team of scientists re-created the temperature and pressure of the interiors of Neptune and Uranus in the lab, and in so doing have gained a greater understanding of the chemistry of these planets' deep water layers. Their findings also provide clues to the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Inhabiting 21st-century science fiction

When will the first baby be born in space?

Highest bid for Blue Origin's maiden voyage $2.6 million and climbing

Back to the space cradle

OUTER PLANETS
Virgin Galactic completes successful space flight

Roscosmos shows design of future nuclear-powered spacecraft

Merida Aerospace plans to begin rocket test launches in 2021

NASA fires up fourth RS-25 engine test

OUTER PLANETS
China's Zhurong rover moves onto Martian surface to begin scientific operations

China's first Mars rover starts exploring red planet

Salts could be important piece of Martian organic puzzle

New ExoMars parachute ready for high altitude drop

OUTER PLANETS
China postpones launch of robotic cargo spacecraft

Space station core module in orbit to prep for next stage of construction

China postpones launch of rocket carrying space station supplies

China's core space station module Tianhe completes in-orbit tests

OUTER PLANETS
SES Prices EUR 625 Million Hybrid Bond Offering

Iridium makes strategic investment in DDK Positioning for enhanced GNSS accuracy

More than 3,000 jobs created as space sector grows across the UK

Euroconsult opens Australian office to help grow local space industry

OUTER PLANETS
Alpha Data Launches new Space Development Kit

Xplore opens satellite manufacturing facility to advance satellite production

Astroscale UK to develop space debris removal technology innovations with OneWeb

Air Force debuts virtual command and control platform

OUTER PLANETS
Origins of life researchers develop a new ecological biosignature

Shrinking planets could explain mystery of universe's missing worlds

Alien radioactive element prompts creation rethink

Coldplay beam new song into space in chat with French astronaut

OUTER PLANETS
Deep water on Neptune and Uranus may be magnesium-rich

Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.