24/7 Space News
TECH SPACE
Team uses 3D printing to strengthen key material in aerospace and energy utilities
An MIT-led team reports a simple, inexpensive way to strengthen a material key to applications in aerospace and nuclear energy generation. The MIT beavers and other shapes in this photo were created using the new technique.
Team uses 3D printing to strengthen key material in aerospace and energy utilities
by Elizabeth A. Thomson | Materials Research Laboratory
Boston MA (SPX) May 19, 2023

The materials key to many important applications in aerospace and energy generation must be able to withstand extreme conditions such as high temperatures and tensile stresses without failing. Now a team of MIT-led engineers reports a simple, inexpensive way to strengthen one of the key materials used today in such applications.

Further, the team believes that their general approach, which involves the 3D printing of a metallic powder strengthened with ceramic nanowires, could be used to improve many other materials. "There is always a significant need for the development of more capable materials for extreme environments. We believe that this method has great potential for other materials in the future," says Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and a professor in MIT's Department of Materials Science and Engineering (DMSE).

Li, who is also affiliated with the Materials Research Laboratory (MRL), is one of three corresponding authors of a paper on the work that appeared in the April 5 issue of Additive Manufacturing. The other corresponding authors are Professor Wen Chen of the University of Massachusetts at Amherst and Professor A. John Hart of the MIT Department of Mechanical Engineering.

Co-first authors of the paper are Emre Tekoglu, an MIT postdoc in the Department of Nuclear Science and Engineering (NSE); Alexander D. O'Brien, an NSE graduate student; and Jian Liu of UMass Amherst. Additional authors are Baoming Wang, an MIT postdoc in DMSE; Sina Kavak of Istanbul Technical University; Yong Zhang, a research specialist at the MRL; So Yeon Kim, a DMSE graduate student; Shitong Wang, an NSE graduate student; and Duygu Agaogullari of Istanbul Technical University.

Toward better performance
The team's approach begins with Inconel 718, a popular "superalloy," or metal capable of withstanding extreme conditions such as temperatures of 700 degrees Celsius (about 1,300 degrees Fahrenheit). They mill commercial Inconel 718 powders with a small amount of ceramic nanowires, resulting in "the homogeneous decoration of nano-ceramics on the surfaces of Inconel particles," the team writes.

The resulting powder is then used to create parts via laser powder bed fusion, a form of 3D printing. That process involves printing thin layers of powder that are each exposed to a laser that moves across the powder, melting it in a specific pattern. Then another layer of powder is spread on top, and the process repeats with the laser moving to melt the pattern for the new layer and bond it with the layer below. The overall process can produce complicated 3D parts.

The researchers found that parts made this way with their new powder have significantly less porosity and fewer cracks than parts made of Inconel 718 alone. And that, in turn, leads to significantly stronger parts that also have a number of other advantages. For example, they are more ductile - or stretchable - and have much better resistance to radiation and high-temperature loading.

Plus, the process itself is not expensive because "it works with existing 3D printing machines. Just use our powder and you get much better performance," says Li.

Xu Song, an assistant professor at the Chinese University of Hong Kong who was not involved in the work, comments: "In this paper, the authors propose a new method for printing metal matrix composites of Inconel 718 reinforced by [ceramic] nanowires. The in-situ dissolution of the ceramic that is induced by the laser melting process has enhanced the thermal resistance and strength of Inconel 718. Moreover, the in-situ reinforcements reduced the grain size and got rid of flaws. Future 3D printing of metal alloys, including modification for high-reflectivity copper and fracture suppression for superalloys, can clearly benefit from this technique."

A huge new space
Li says the work "could open a huge new space for alloy design" because the cooling rate of ultrathin 3D-printed layers of metal alloys is much faster than the rate for bulk parts created using conventional melt-solidification processes. As a result, "many of the rules on chemical composition that apply to bulk casting don't seem to apply to this kind of 3D printing. So we have a much bigger composition space to explore for the base metal with ceramic additions."

Emre Tekoglu, one of the lead authors of the Additive Manufacturing paper, says, "This composition was one of the first ones we decided on, so it was very exciting to get these results in real life. There is still a vast exploration space. We will keep exploring new Inconel composite formulations to end up with materials that could withstand more extreme environments."

Alexander O'Brien, another lead author, says, "The precision and scalability that comes with 3D printing has opened up a world of new possibilities for materials design. Our results here are an exciting early step in a process that will surely have a major impact on design for nuclear, aerospace, and all energy generation in the future."

This work was supported by Eni S.p.A. through the MIT Energy Initiative, the National Science Foundation, and ARPA-E.

Research Report:"Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides"

Related Links
Materials Research Laboratory
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Integral imaging-based tabletop light field 3D display with large viewing angle
Beijing, China (SPX) May 15, 2023
Light field 3D display is an innovative glasses-free 3D display technology that provides a more accurate reconstruction of 3D information than 2D and traditional 3D displays. With its ability to produce realistic, vivid, and intuitive 3D images, it has a good potential for development. In particular, the tabletop light field 3D display provides a new display form that combines the features of a real-world tabletop and a digital 3D display. This allows users to interactively share and view 3D image ... read more

TECH SPACE
NASA selects winners, announces final phase of Space Food Challenge

Private mission carrying first Saudi astronauts to visit ISS set for launch

'Startup Nation' Israel hopes to ride out storm

NASA begins feedback process for Moon to Mars Architecture

TECH SPACE
South Korea hails successful launch of homegrown rocket

Multi-launch deal signed for OTV missions from Spaceport Nova Scotia

South Korea postpones third launch of homegrown rocket

Designing a next generation hypersonic demonstrator

TECH SPACE
Remotely waiting in Gale: Sols 3832-3833

Perseverance captures view of Mars' Belva Crater

Martian crust like heavy armour

What's so special about large grains on Mars

TECH SPACE
China's next space exploration to feature new faces

"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

TECH SPACE
Iridium adds to constellation resilience with launch of spare satellites

Terran Orbital building satellite manufacturing facility

US FCC signs off on Viasat acquisition of Inmarsat

Inmarsat selects SWISSto12's HummingSat for I-8 satellites to power L-Band network

TECH SPACE
TransAstra receives Space Force contract to explore in-orbit propulsion systems

Heinrich Hertz mission ready for launch

Team uses 3D printing to strengthen key material in aerospace and energy utilities

Momentus deploys Qosmosys satellite and on-orbit support of Caltech hosted payload

TECH SPACE
Global team simulates message from extraterrestrial intelligence to Earth

Chemistry: Meteoritic and volcanic particles may have promoted origin of life reactions

NASA's Spitzer, TESS find potentially volcano-covered Earth-size world

Astronomers observe the first radiation belt seen outside of our solar system

TECH SPACE
NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.