24/7 Space News
EXO WORLDS
Chemistry: Meteoritic and volcanic particles may have promoted origin of life reactions
illustration only
ADVERTISEMENT
     
Chemistry: Meteoritic and volcanic particles may have promoted origin of life reactions
by Staff Writers
Heidelberg, Germany (SPX) May 26, 2023

Precursors of the molecules needed for the origin of life may have been generated by chemical reactions promoted by iron-rich particles from meteors or volcanic eruptions on Earth approximately 4.4 billion years ago, according to a study published in Scientific Reports.

Previous research has suggested that the precursors of organic molecules - hydrocarbons, aldehydes and alcohols - may have been delivered by asteroids and comets or produced by reactions in the early Earth's atmosphere and oceans. These reactions may have been promoted by energy from lightning, volcanic activity, or impacts. However a lack of data has meant that it is unclear what the predominant mechanism that produced these precursors was.

Oliver Trapp and colleagues investigated whether meteorite or ash particles deposited on volcanic islands could have promoted the conversion of atmospheric carbon dioxide to the precursors of organic molecules on the early Earth. They simulated a range of conditions that previous research has suggested may have been present on the early Earth by placing carbon dioxide gas in a heated and pressurised system (an autoclave) under pressures ranging between nine and 45 bars and temperatures ranging between 150 and 300 degrees Celsius. They also simulated wet and dry climate conditions by adding either hydrogen gas or water to the system. They mimicked the depositing of meteorite or ash particles on volcanic islands by adding different combinations of crushed samples of iron meteorites, stony meteorites, or volcanic ash into the system, as well as minerals that may have been present in the early Earth and are found in either the Earth's crust, meteorites, or asteroids.

The authors found that the iron-rich particles from meteorites and volcanic ash promoted the conversion of carbon dioxide into hydrocarbons, aldehydes and alcohols across a range of atmosphere and climate conditions that may have been present in the early Earth. They observed that aldehydes and alcohols formed at lower temperatures while hydrocarbons formed at 300 degrees Celsius. The authors suggest that as the early Earth's atmosphere cooled over time, the production of alcohols and aldehydes may have increased. These compounds may then have participated in further reactions that could have led to the formation of carbohydrates, lipids, sugars, amino acids, DNA, and RNA. By calculating the rate of the reactions they observed and using data from previous research on the conditions of the early Earth, the authors estimate that their proposed mechanism could have synthesised up to 600,000 tonnes of organic precursors per year across the early Earth.

The authors propose that their mechanism may have contributed to the origins of life on Earth, in combination with other reactions in the early Earth's atmosphere and oceans.

Research Report:Synthesis of prebiotic organics from CO2 by catalysis with meteoritic and volcanic particles

Related Links
Max Planck Institute for Astronomy
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
New study provides novel insights into the cosmic evolution of amino acids
Tsukuba, Japan (SPX) May 26, 2023
All biological amino acids on Earth appear exclusively in their left-handed form, but the reason underlying this observation is elusive. Recently, scientists from Japan uncovered new clues about the cosmic origin of this asymmetry. Based on the optical properties of amino acids found on the Murchison meteorite, they conducted physics-based simulations, revealing that the precursors to the biological amino acids may have determined the amino acid chirality during the early phase of galactic evolution. ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
ASPINA Launches Space Team

Space Hero and Partners Launch Innovative Space Village, Boosting Space Tourism

Virgin Galactic resumes spaceflights after two year pause

Solar Foods one of the Phase II winners of NASA Deep Space Food Challenge

EXO WORLDS
Chinese fans welcome 'Comrade Musk'

Weather delay moves SpaceX resupply mission to same day as Starlink launch

Space Flight Laboratory selects Rocket Lab to launch Telesat Broadband Satellite

Tesla's Musk hails China's 'vitality' during Beijing visit

EXO WORLDS
Ingenuity's high-stakes game of hide and seek

Meet the scientist (sort of) spending a year on Mars

Hitting the road after three weeks at Ubajara: Sols 3839-3840

MAHLI works the night shift: Sols 3837-3838

EXO WORLDS
Astronauts meet in Tiangong space station core module

China launches Shenzhou-16 with first civilian to space station

China launches Shenzhou-16 with first civilian to space station

China's 'space dream': A Long March to the Moon and beyond

EXO WORLDS
A Saudi Arabian satellite launches on a SpaceX Falcon 9 rocket

Terran Orbital Announces $37.1 Million Registered Direct Offering

Iridium adds to constellation resilience with launch of spare satellites

NASA funds small business to advance tech for Space, Earth

EXO WORLDS
Meta unveils new VR headset as Apple eyes market

Nvidia, the world's newest, AI-amped tech giant

UN aims to deliver draft plastics treaty by year's end

Countries tussle at 'rocky' global plastic talks

EXO WORLDS
Chemistry: Meteoritic and volcanic particles may have promoted origin of life reactions

Quest for alien signals in the heart of the Milky Way takes off

The search for habitable planets expands

Astronomers discover a key planetary system to understand the formation mechanism of the mysterious 'super-Earths'

EXO WORLDS
Juice deployments complete: final form for Jupiter

First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

NASA's Juno mission closing in on Io

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.