. 24/7 Space News .

Subscribe to our free daily newsletters

Taking stock of charcoal in the world's soil
by Staff Writers
Washington DC (SPX) Oct 10, 2016

File image.

Forest fires hit the Taking stock of charcoal in the world's soils all too regularly - in fact, fire affects about 4.64 million km2 of biomass per year, an area almost three times the size of Alaska. But after the fire something remains - stable carbon.

Pyrogenic organic carbon, sometimes called black carbon or PyC, is the dark, charcoal-like form of carbon that's left on the soil when vegetation is burned. It is not much of a pollutant though - it plays a role in both climate and soil science, because of its ability to absorb sunlight and store nutrients needed for plant growth.

But despite its importance in maintaining our ecological balance, researchers have historically had very little knowledge of just how much PyC we have on Earth, or where it can be found.

Thanks to work from researchers at the University of Zurich (UZH) and their study published in Frontiers in Earth Science, that's all about to change. They have developed the world's first global PyC database, and they say that it, in time, it will help us to refine our understanding of the carbon cycle.

This undertaking, led by Dr. Samuel Abiven, involved the collection of more than 560 measurements of PyC across a range of published studies. This provided data on everything from the soil type to what's called the 'soil organic carbon' - a key measure of the soil's health.

To determine why PyC might be found in each study region, the team also looked at the three main factors that could influence its presence in soil -

(1) land use and the nature of fires,

(2) climate conditions, such as temperature and humidity, and

(3) the soil's properties, e.g. its acidity.

For these, Abiven and his team had to look to other valuable sources of data, including NASA satellite imagery products, which offered insights into land cover or the pattern and frequency of fires in each region.

Once assembled, the database could then be used to examine the presence of PyC across the globe, and the results were surprising. They found that, PyC is a major component in soil overall the world, representing 13% of the organic matter in average, which corresponds to more than half of the organic matter identified until now.

"In some regions, PyC represented up to 60% of the organic matter. As the authors have said themselves, these results paint "an unexpected new picture on PyC distribution in soils."

A key finding was that the type of fire didn't make a difference - fires could be large and intense, or 'cool' and small, the resulting amount of PyC found in the soil varied very little.

Another result was the link between PyC content and land use - agricultural land came out on top, with the highest proportion of this useful form of carbon in its soil. Unsurprisingly, warm equatorial regions were found to be PyC-rich, whereas polar regions, with their much lower vegetation cover, were show low PyC concentrations.

High pH, clay-rich soils seemed to retain their pyrogenic organic carbon better than any other soil type - the authors believe that this is because its special minerals can bind and stabilize PyC for an extended duration.

When asked what he believed to be the key finding of the study, Abiven said, "It is that PyC represents such a large amount of the soil organic matter - there is more of it than there are identifiable molecules that originate from plants.

"This makes it the most persistent compound in soil we know to date. In addition, the fact that soil properties matter more than fire patterns or climate reflects the importance of PyC to longer term dynamics."

There are some limitations to this study - as yet, most of the data collected come from Europe, North America and Australia, leaving parts of the world unexplored. But with input from the wider scientific community, Abiven hopes to change that, "The database is available and open access to the scientific community and everybody is welcome to use and extend it!"

Research paper

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Electrons in graphene behave like light, only better
New York NY (SPX) Oct 07, 2016
A team led by Cory Dean, assistant professor of physics at Columbia University, Avik Ghosh, professor of electrical and computer engineering at the University of Virginia, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has directly observed--for the first time--negative refraction for electrons passing across a boundary between two regions in a conduct ... read more

Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

Study predicts next global dust storm on Mars

NASA flight program tests Mars Lander vision system

Yorkshire salt mine could help shed light on Martian life

NASA's Curiosity Rover Begins Next Mars Chapter

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Students team up with NASA for space coms and navigation

Software star Google expected to flex hardware muscle

Beijing exhibition means plenty of "space" for everyone

Space for Shenzhou 11

Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Airbus DS and Neumann Space sign payload agreement for ISS

NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Trusted Ariane 5 lays foundations for Ariane 6

ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

Rocket launch site to open up New Zealand space industry: Minister

The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

Novel 3-in-1 'Rheo-Raman' microscope enables interconnected studies of soft materials

Solving a cryptic puzzle with a little help from a hologram

Brothers behind Ubisoft locked in real-life battle for control

Big data processing enables worldwide bacterial analysis

Reuters Events SMR and Advanced Reactor 2023

Reuters Events SMR and Advanced Reactor 2023

The content herein, unless otherwise known to be public domain, are Copyright 1995-2022 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.