. | . |
Solving a cryptic puzzle with a little help from a hologram by Staff Writers Ramat Ganl Israel (SPX) Oct 10, 2016
A recent discovery published in Nature Physics provides an innovative technique for calculating the shapes of electrons. This finding will help scientists gain a better and faster understanding of the properties of complex materials. Dr. Emanuele Dalla Torre, from Bar-Ilan University, together with Dr. Yang He and Prof. Eugene Demler, from Harvard University, used holographic logic to compile an algorithm for visualizing the shape of an electron in a superconducting material. This successful collaboration clarified the puzzling results of a series of experiments performed in the past 15 years, resolving a mysterious scientific enigma. Dr. Dalla Torre - a faculty member in the Department of Physics at Bar-Ilan University in Israel - says that according to quantum mechanics electrons can possess wave-like properties. "The wave shape, however, is not always apparent, and tends to vary depending on the conditions of the material that hosts the electron," says Dalla Torre. "The invention in the early 1980's of the STM - a remarkably high-resolution microscope - provided the ability, for the first time, to view individual atoms in materials. Nevertheless until now, scientists had viewed the shape of an electron only in isolated atoms - in a vacuum - but not within a complex material containing a vast array of atoms, where the outline of each electron is indistinguishable," Dalla Torre explains. "We developed a mathematical algorithm which helped us analyse high-precision STM measurements of cuprates - copper-oxygen compounds, known to maintain the best superconductive properties. By identifying recurring correlations between previously unnoticed experimental data points, we were able to reconstruct the shape of the electrons in these wondrous materials", he says.
Who's afraid of theoretical physics? For the first time ever, we isolated and confirmed a unique shape of an electron within a complex material", explains Dalla Torre, adding "Interestingly, this shape coincided precisely with predictions made in 1988 by theoretical physicists Zhang and Rice from ETH - the University for Science and Technology in Zurich." Furthermore, by revealing previously unknown information, the discovery by Dalla Torre and his colleagues enabled them also to provide a coherent explanation for several enigmatic experiments, pioneered in 2002 by Prof. Seamus Davis, from Cornell University, and his student Prof. Jennifer Hoffman, from Harvard University, who, using an STM, revealed recurring patterns of atomic brightness in cuprates. Over the years, numerous researchers offered interpretations for these findings and for other related ambiguous observations, but, until now, there was no satisfactory explanation for the mysteriously-recurring signals. Dalla Torre and his colleagues suspected it had to do with the shape of the electrons, and, once they mapped these shapes in cuprates, they were able to offer a simple explanation for the observation.
Randomly searching for new materials - like baking a cake without a recipe "The highest critical temperature of superconductors discovered until now is that of cuprates, which require cooling to as low as -135C to become superconductive. The costs involved in cooling down to these temperatures are prohibitively high, which explains the ongoing search for the Holy Grail - the highest possible critical temperature which provides economic viability," Dalla Torre says. "In the absence of an effective methodology on their quest for new superconducting materials, labs worldwide resort to testing elements randomly, in the hope to discover the perfect candidate," he says. "It's like baking a cake with no recipe: You hope it comes out fluffy, but have no idea as to which ingredients may affect stiffness".
Light exercise with a hologram Some consider electrons to be the "soul" of a material - determining its color, its conductivity, and its entire chemical activity. Dalla Torre expects that this innovative technique for decoding shapes of electrons will enable the design of smarter materials suitable for ever-changing future technologies. "By gaining a better understanding of the behavior of materials, scientists may be on the path to finding the next superconductor," he says. The research was published recently as a new study in Nature Physics magazine. A view-only version of the research paper can be accessed through the Springer Nature content sharing initiative
Related Links Bar-Ilan University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |