. | . |
TESS reveals an improbable planet by Staff Writers Porto, Portgual (SPX) Oct 30, 2019
Using asteroseismic1 data from NASA's Transiting Exoplanet Survey Satellite (TESS), an international team2, led by Instituto de Astrofisica e Ciencias do Espaco (IA3) researcher Tiago Campante, studied the red-giant stars HD 212771 and HD 203949. These are the first detections of oscillations in previously known exoplanet-host stars by TESS. The result was published today in an article4 in The Astrophysical Journal. Tiago Campante (IA and Faculdade de Ciencias da Universidade do Porto - FCUP) explains that detecting these oscillations was only possible because: "TESS observations are precise enough to allow measuring the gentle pulsations at the surfaces of stars. These two fairly evolved stars also host planets, providing the ideal testbed for studies of the evolution of planetary systems." Having determined the physical properties of both stars, such as their mass, size and age, through asteroseismology, the authors then focused their attention on the evolutionary state of HD 203949. Their aim was to understand how its planet could have avoided engulfment, since the envelope of the star would have expanded well beyond the current planetary orbit during the red-giant phase of evolution. Co-author Vardan Adibekyan (IA and Universidade do Porto) comments: "This study is a perfect demonstration of how stellar and exoplanetary astrophysics are linked together. Stellar analysis seems to suggest that the star is too evolved to still host a planet at such a 'short' orbital distance, while from the exoplanet analysis we know that the planet is there!" By performing extensive numerical simulations, the team thinks that star-planet tides might have brought the planet inward from its original, wider orbit, placing it where we see it today. Adibekyan adds: "The solution to this scientific dilemma is hidden in the 'simple fact' that stars and their planets not only form but also evolve together. In this particular case, the planet managed to avoid engulfment." In the past decade, asteroseismology has had a significant impact on the study of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. These studies have advanced considerably with space-based observatories like CoRoT (CNES/ESA) and Kepler (NASA), and are set to continue in the next decade with TESS and PLATO (ESA). Tiago Campante explains that: "IA's involvement in TESS is at the level of the scientific coordination within the TESS Asteroseismic Science Consortium (TASC). TASC is a large and unique scientific collaboration, bringing together all relevant research groups and individuals from around the world who are actively engaged in research in the field of asteroseismology. Following in the footsteps of its successful predecessor, the Kepler Asteroseismic Science Consortium (KASC), TASC is based on a collaborative and transparent working-group structure, aimed at facilitating open collaboration between scientists."
Research Report: "TESS Asteroseismology of the known red-giant host stars HD 212771 and 203949"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |