. | . |
New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity by Staff Writers Seville, Spain (SPX) Oct 28, 2019
University of Seville researchers, led by the professor Francisco Luis Cumbrera, together with colleagues from the University of Zaragoza and CSIC, have found a procedure for producing the phase B6C of boron carbide. This phase had been described from a theoretical point of view, but obtaining it and describing its character were a task that remained unfulfilled. This scientific-technological advance will make it possible to provide a cheap, ultra-resistant material for the design of planes, cars and other means of transport. In addition, B6C is also ultra-resistant to radioactivity. BxC is a family of ceramic materials known as "boron carbide". The "official" or canonical member (in scientific language, stoichiometric) is B4C. This is a very hard black solid, which remains stable at very high temperatures. The family is big: from B4C to B14C. Depending on the proportion of B (boron) and C (carbon), its physical properties change. B6C is the member of the family (phase B6C) with 6 boron atoms to each one of carbon and theoretically it had been deemed that it would be ultra-resistant. Until now, a way to produce it systematically had not been found, nor how to distribute the boron and carbon atoms internally. The material has been made using the technique of laser zone floating, which consists of fusion by means of the application of intense laser radiation and then rapid solidification. Such an idea was proposed by Bibi Malmal Moshtaghion, a researcher trained in Iran and in Seville with a Juan de la Cierva contract to work at the University of Zaragoza. Professor Cumbrera's team has used X-ray diffraction techniques to characterise the crystallography of the samples obtained and the defects present in them, as well as the possible preferential ordering of the polycrystal grains. Later, its mechanical properties were determined by both teams. The phase B6C obtained in this way possess a hardness of 52 GPa and a Young modulus of 600 GPa. In comparison, the hardness of diamond is around 45 GPa, although it has a Young modulus of 1050 GPa. "This make phase B6C the hardest material in nature after diamond and the cubic phase of boron nitride", the researchers state.
Ten highlights from NASA's Van Allen Probes mission Greenbelt MD (SPX) Oct 18, 2019 After seven years of operations, and upon finally running out of propellant, the second of the twin Van Allen Probes spacecraft will be retired on Friday, Oct. 18, 2019. Spacecraft A of the Van Allen Probes mission will be shut down by operators at the Johns Hopkins University Applied Physics Lab in Laurel, Maryland. The command follows one three months previously that terminated operations for spacecraft B, the second spacecraft of the mission. "This mission spent seven years in the radiation bel ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |