. 24/7 Space News .
EXO WORLDS
Study of young chaotic star system reveals planet formation secrets
by Staff Writers
Charlottesville VA (SPX) Jun 18, 2021

Elias 2-27 is a young star located just 378 light-years from Earth. The star is host to a massive protoplanetary disk of gas and dust, one of the key elements to planet formation. In this graphic illustration, dust is distributed along a spiral-shaped morphology first discovered in Elias 2-27 in 2016. The larger dust grains are found along the spiral arms while the smaller dust grains are distributed all around the protoplanetary disk. Asymmetric inflows of gas were also detected during the study, indicating that there may still be material infalling into the disk. Scientists believe that Elias 2-27 may eventually evolve into a planetary system, with gravitational instabilities causing the formation of giant planets. Because this process takes millions of years to occur, scientists can only observe the beginning stages.

A team of scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to study the young star Elias 2-27 have confirmed that gravitational instabilities play a key role in planet formation, and have for the first time directly measured the mass of protoplanetary disks using gas velocity data, potentially unlocking one of the mysteries of planet formation. The results of the research are published in two papers in The Astrophysical Journal.

Protoplanetary disks - planet-forming disks made of gas and dust that surround newly formed young stars - are known to scientists as the birthplace of planets. The exact process of planet formation, however, has remained a mystery. The new research, led by Teresa Paneque-Carreno - a recent graduate of the Universidad de Chile and PhD student at the University of Leiden and the European Southern Observatory, and the primary author on the first of the two papers - focuses on unlocking the mystery of planet formation.

During observations, scientists confirmed that the Elias 2-27 star system - a young star located less than 400 light-years away from Earth in the constellation Ophiuchus - was exhibiting evidence of gravitational instabilities which occur when planet-forming disks carry a large fraction of the system's stellar mass. "How exactly planets form is one of the main questions in our field. However, there are some key mechanisms that we believe can accelerate the process of planet formation," said Paneque-Carreno. "We found direct evidence for gravitational instabilities in Elias 2-27, which is very exciting because this is the first time that we can show kinematic and multi-wavelength proof of a system being gravitationally unstable. Elias 2-27 is the first system that checks all of the boxes."

Elias 2-27's unique characteristics have made it popular with ALMA scientists for more than half a decade. In 2016, a team of scientists using ALMA discovered a pinwheel of dust swirling around the young star. The spirals were believed to be the result of density waves, commonly known to produce the recognizable arms of spiral galaxies - like the Milky Way Galaxy - but at the time, had never before been seen around individual stars.

"We discovered in 2016 that the Elias 2-27 disk had a different structure from other already studied systems, something not observed in a protoplanetary disk before: two large-scale spiral arms. Gravitational instabilities were a strong possibility, but the origin of these structures remained a mystery and we needed further observations," said Laura Perez, Assistant Professor at the Universidad de Chile and the principal investigator on the 2016 study. Together with collaborators, she proposed further observations in multiple ALMA bands that were analyzed with Paneque-Carreno as a part of her M.Sc. thesis at Universidad de Chile.

In addition to confirming gravitational instabilities, scientists found perturbations - or disturbances - in the star system above and beyond theoretical expectations. "There may still be new material from the surrounding molecular cloud falling onto the disk, which makes everything more chaotic," said Paneque-Carreno, adding that this chaos has contributed to interesting phenomena that have never been observed before, and for which scientists have no clear explanation. "The Elias 2-27 star system is highly asymmetric in the gas structure. This was completely unexpected, and it is the first time we've observed such vertical asymmetry in a protoplanetary disk."

Cassandra Hall, Assistant Professor of Computational Astrophysics at the University of Georgia, and a co-author on the research, added that the confirmation of both vertical asymmetry and velocity perturbations - the first large-scale perturbations linked to spiral structure in a protoplanetary disk - could have significant implications for planet formation theory. "This could be a 'smoking gun' of gravitational instability, which may accelerate some of the earliest stages of planet formation. We first predicted this signature in 2020, and from a computational astrophysics point of view, it's exciting to be right."

Paneque-Carreno added that while the new research has confirmed some theories, it has also raised new questions. "While gravitational instabilities can now be confirmed to explain the spiral structures in the dust continuum surrounding the star, there is also an inner gap, or missing material in the disk, for which we do not have a clear explanation."

One of the barriers to understanding planet formation was the lack of direct measurement of the mass of planet-forming disks, a problem addressed in the new research. The high sensitivity of ALMA Band 6, paired with Bands 3 and 7, allowed the team to more closely study the dynamical processes, density, and even the mass of the disk. "Previous measurements of protoplanetary disk mass were indirect and based only on dust or rare isotopologues. With this new study, we are now sensitive to the entire mass of the disk," said Benedetta Veronesi - a graduate student at the University of Milan and postdoctoral researcher at Ecole normale superieure de Lyon, and the lead author on the second paper. "This finding lays the foundation for the development of a method to measure disk mass that will allow us to break down one of the biggest and most pressing barriers in the field of planet formation. Knowing the amount of mass present in planet-forming disks allows us to determine the amount of material available for the formation of planetary systems, and to better understand the process by which they form."

Although the team has answered a number of key questions about the role of gravitational instability and disk mass in planet formation, the work is not yet done. "Studying how planets form is difficult because it takes millions of years to form planets. This is a very short time-scale for stars, which live thousands of millions of years, but a very long process for us," said Paneque-Carreno. "What we can do is observe young stars, with disks of gas and dust around them, and try to explain why these disks of material look the way they do. It's like looking at a crime scene and trying to guess what happened. Our observational analysis paired with future in-depth analysis of Elias 2-27 will allow us to characterize exactly how gravitational instabilities act in planet-forming disks, and gain more insight into how planets are formed."

Research Reports: Spiral Arms and a Massive Dust Disk with non-Keplerian Kinematics: Possible Evidence for Gravitational Instability and A Dynamical Measurement of the Disk Mass in Elias 2-27


Related Links
National Radio Astronomy Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Researchers discover orbital patterns of trans-Neptunian objects
Abu Dhabi, UAE (SPX) Jun 18, 2021
Trans-Neptunian Objects (TNOs), small objects that orbit the sun beyond Neptune, are fossils from the early days of the solar system which can tell us a lot about its formation and evolution. A new study led by Mohamad Ali-Dib, a research scientist at the NYU Abu Dhabi Center for Astro, Particle, and Planetary Physics, reports the significant discovery that two groups of TNOs with different surface colors also have very different orbital patterns. This new information can be compared to models of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Thomas and the blue marble

Astronauts enjoy many food, beverage choices in orbit

US, French astronauts make ISS spacewalk

NASA to send mannequins to moon to prepare for crewed missions

EXO WORLDS
Operational Fires Program completes successful rocket engine tests

Student Experiments to Blast Off from NASA Wallops

China's Long March rocket has world's highest success rate: expert

Turkey invites Russia to take part in construction of country's spaceport

EXO WORLDS
Jezero crater's 'Delta Scarp' revealed in new images

Study Looks More Closely at Mars' Underground Water Signals

Lockheed Martin aeroshell selected to for next Mars lander

Mars rover to move south after testing

EXO WORLDS
Astronauts arrange new 'home' in space

How does China's urine recycling system work in space

Xi lauds 'new horizon' for humanity in space chat with astronauts

Successful program ignited by modest spark of an idea

EXO WORLDS
USAF, FAA collaborate on commercial space regulations

EXIM approves $80M to support insurance coverage for Hispasat satellite

Patents help build a global map of new space industry

Benchmark unveils in-space mobility service to unlock OSAM innovations

EXO WORLDS
AiRANACULU wins second NASA contract for advanced space communications system

CMRP to play key role in space technology testing network

Northrop Grumman flight tests Digital Wideband AESA Sensor

Compact quantum computer for server centers

EXO WORLDS
Nightside radio could help reveal exoplanet details

Collection of starshade research helps advance exoplanet imaging by space telescopes

Study of young chaotic star system reveals planet formation secrets

Researchers discover orbital patterns of trans-Neptunian objects

EXO WORLDS
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.