. 24/7 Space News .
EXO WORLDS
Nightside radio could help reveal exoplanet details
by Staff Writers
Houston TX (SPX) Jun 23, 2021

Rice University scientists have enhanced models that could detect magnetosphere activity on exoplanets. The models add data from nightside activity that could increase signals by at least an order of magnitude. In this illustration, the planet's star is at top left, and the rainbow patches are the radio emission intensities, most coming from the nightside. The white lines are magnetic field lines.

We can't detect them yet, but radio signals from distant solar systems could provide valuable information about the characteristics of their planets. A paper by Rice University scientists describes a way to better determine which exoplanets are most likely to produce detectable signals based on magnetosphere activity on exoplanets' previously discounted nightsides.

The study by Rice alumnus Anthony Sciola, who earned his Ph.D. this spring and was mentored by co-author and space plasma physicist Frank Toffoletto, shows that while radio emissions from the daysides of exoplanets appear to max out during high solar activity, those that emerge from the nightside are likely to add significantly to the signal.

This interests the exoplanet community because the strength of a given planet's magnetosphere indicates how well it would be protected from the solar wind that radiates from its star, the same way Earth's magnetic field protects us.

Planets that orbit within a star's Goldilocks zone, where conditions may otherwise give rise to life, could be deemed uninhabitable without evidence of a strong enough magnetosphere. Magnetic field strength data would also help to model planetary interiors and understand how planets form, Sciola said.

Earth's magnetosphere isn't exactly a sphere; it's a comet-shaped set of field lines that compress against the planet's day side and tail off into space on the night side, leaving eddies in their wake, especially during solar events like coronal mass ejections. The magnetosphere around every planet emits what we interpret as radio waves, and the closer to the sun a planet orbits, the stronger the emissions.

Astrophysicists have a pretty good understanding of our own system's planetary magnetospheres based on the Radiometric Bode's Law, an analytical tool used to establish a linear relationship between the solar wind and radio emissions from the planets in its path. In recent years, researchers have attempted to apply the law to exoplanetary systems with limited success.

"The community has used these rule-of-thumb empirical models based on what we know about the solar system, but it's kind of averaged and smoothed out," Toffoletto said. "A dynamic model that includes all this spiky behavior could imply the signal is actually much larger than these old models suggest. Anthony is taking this and pushing it to its limits to understand how signals from exoplanets could be detected."

Sciola said the current analytic model relies primarily on emissions expected to emerge from an exoplanet's polar region, what we see on Earth as an aurora. The new study appends a numerical model to those that estimate polar region emissions to provide a more complete picture of emissions around an entire exoplanet.

"We're adding in features that only show up in lower regions during really high solar activity," he said.

It turns out, he said, that nightside emissions don't necessarily come from one large spot, like auroras around the north pole, but from various parts of the magnetosphere. In the presence of strong solar activity, the sum of these nightside spots could raise the planet's total emissions by at least an order of magnitude.

"They're very small-scale and occur sporadically, but when you sum them all up, they can have a great effect," said Sciola, who is continuing the work at Johns Hopkins University's Applied Physics Laboratory. "You need a numerical model to resolve those events. For this study, Sciola used the Multiscale Atmosphere Geospace Environment (MAGE) developed by the Center for Geospace Storms (CGS) based at the Applied Physics Laboratory in collaboration which the Rice space plasma physics group.

"We're essentially confirming the analytic model for more extreme exoplanet simulations, but adding extra detail," he said. "The takeaway is that we're bringing further attention to the current model's limiting factors but saying that under certain situations, you can get more emissions than that limiting factor suggests."

He noted the new model works best on exoplanetary systems. "You need to be really far away to see the effect," he said. It's hard to tell what's going on at the global scale on Earth; it's like trying to watch a movie by sitting right next to the screen. You're only getting a little patch of it."

Also, radio signals from an Earth-like exoplanet may never be detectable from Earth's surface, Sciola said. "Earth's ionosphere blocks them," he said. "That means we can't even see Earth's own radio emission from the ground, even though it's so close."

Detection of signals from exoplanets will require either a complex of satellites or an installation on the far side of the moon. "That would be a nice, quiet place to make an array that won't be limited by Earth's ionosphere and atmosphere," Sciola said.

He said the observer's position in relation to the exoplanet is also important. "The emission is 'beamed,'" Sciola said. "It's like a lighthouse: You can see the light if you are in line with the beam, but not if you are directly above the lighthouse. So having a better understanding of the expected angle of the signal will help observers determine if they are in line to observe it for a particular exoplanet."

The study appears in The Astrophysical Journal.

Research paper


Related Links
Rice University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Researchers discover orbital patterns of trans-Neptunian objects
Abu Dhabi, UAE (SPX) Jun 18, 2021
Trans-Neptunian Objects (TNOs), small objects that orbit the sun beyond Neptune, are fossils from the early days of the solar system which can tell us a lot about its formation and evolution. A new study led by Mohamad Ali-Dib, a research scientist at the NYU Abu Dhabi Center for Astro, Particle, and Planetary Physics, reports the significant discovery that two groups of TNOs with different surface colors also have very different orbital patterns. This new information can be compared to models of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Thomas and the blue marble

Astronauts enjoy many food, beverage choices in orbit

US, French astronauts make ISS spacewalk

NASA to send mannequins to moon to prepare for crewed missions

EXO WORLDS
Operational Fires Program completes successful rocket engine tests

Student Experiments to Blast Off from NASA Wallops

China's Long March rocket has world's highest success rate: expert

Turkey invites Russia to take part in construction of country's spaceport

EXO WORLDS
Jezero crater's 'Delta Scarp' revealed in new images

Study Looks More Closely at Mars' Underground Water Signals

Lockheed Martin aeroshell selected to for next Mars lander

Mars rover to move south after testing

EXO WORLDS
Astronauts arrange new 'home' in space

How does China's urine recycling system work in space

Xi lauds 'new horizon' for humanity in space chat with astronauts

Successful program ignited by modest spark of an idea

EXO WORLDS
USAF, FAA collaborate on commercial space regulations

EXIM approves $80M to support insurance coverage for Hispasat satellite

Patents help build a global map of new space industry

Benchmark unveils in-space mobility service to unlock OSAM innovations

EXO WORLDS
AiRANACULU wins second NASA contract for advanced space communications system

CMRP to play key role in space technology testing network

Northrop Grumman flight tests Digital Wideband AESA Sensor

Compact quantum computer for server centers

EXO WORLDS
Nightside radio could help reveal exoplanet details

Collection of starshade research helps advance exoplanet imaging by space telescopes

Study of young chaotic star system reveals planet formation secrets

Researchers discover orbital patterns of trans-Neptunian objects

EXO WORLDS
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.