. 24/7 Space News .
STELLAR CHEMISTRY
Strange gamma-ray heartbeat puzzles scientists
by Staff Writers
Hamburg, Germany (SPX) Aug 18, 2020

The microquasar SS 433 (background) sways with a period of 162 days. The inconspicuous gas cloud Fermi J1913+0515 (foreground), about 100 light years away, pulsates with the same rhythm in gamma rays, suggesting a direct connection. But how exactly the microquasar drives this 'heartbeat' of the gas cloud is still puzzling.

Scientists have detected a mysterious gamma-ray heartbeat coming from a cosmic gas cloud. The inconspicuous cloud in the constellation Aquila is beating with the rhythm of a neighbouring precessing black hole, indicating a connection between the two objects, as the team led by DESY Humboldt Fellow Jian Li and ICREA Professor Diego F. Torres from the Institute of Space Sciences (IEEC-CSIC) reports in the journal Nature Astronomy. Just how the black hole powers the cloud's gamma-ray heartbeat over a distance of about 100 light years remains enigmatic.

The research team, comprising scientists from Germany, Spain, China and the U.S., rigorously analysed more than ten years of data from the US space administration NASA's Fermi gamma-ray space telescope, looking at a so-called micro quasar.

The system catalogued as SS 433 is located some 15 000 lightyears away in the Milky Way and consists of a giant star with about 30 times the mass of our sun and a black hole with about 10 to 20 solar masses. The two objects are orbiting each other with a period of 13 days, while the black hole sucks matter from the giant star.

"This material accumulates in an accretion disc before falling into the black hole, like water in the whirl above the drain of a bath tub," explains Li. "However, a part of that matter does not fall down the drain but shoots out at high speed in two narrow jets in opposite directions above and below the rotating accretion disk."

This setting is known from active galaxies called quasars with monstrous black holes with millions of solar masses at their centres that shoot jets tens of thousands of lightyears into the cosmos. As SS 433 looks like a scaled-down version of these quasars, it has been dubbed a micro quasar.

The high-speed particles and the ultra-strong magnetic fields in the jet produce X-rays and gamma rays. "The accretion disc does not lie exactly in the plane of the orbit of the two objects. It precesses, or sways, like a spinning top that has been set up slanted on a table," says Torres. "As a consequence, the two jets spiral into the surrounding space, rather than just forming a straight line."

The precession of the black hole's jets has a period of about 162 days. Meticulous analysis revealed a gamma-ray signal with the same period from a position located relatively far from the micro quasar's jets, which has been labelled as Fermi J1913+0515 by the scientists. It is located at the position of an unremarkable gas enhancement. The consistent periods indicate the gas cloud's emission is powered by the micro quasar.

"Finding such an unambiguous connection via timing, about 100 light years away from the micro quasar, not even along the direction of the jets is as unexpected as amazing," says Li. "But how the black hole can power the gas cloud's heartbeat is unclear to us."

Direct periodic illumination by the jet seems unlikely. An alternative that the team explored is based on the impact of fast protons (the nuclei of hydrogen atoms) produced at the ends of the jets or near the black hole, and injected into the cloud, where these subatomic particles hit the gas and produce gamma rays.

Protons could also be part of an outflow of fast particles from the edge of the accretion disc. Whenever this outflow strikes the gas cloud, it lights up in gamma rays, which would explain its strange heartbeat. "Energetically, the outflow from the disc could be as powerful as that of the jets and is believed to precess in solidarity with the rest of the system," explains Torres.

Further observations as well as theoretical work are required to fully explain the strange gamma-ray heartbeat of this unique system beyond this initial discovery. "SS 433 continues to amaze observers at all frequencies and theoreticians alike," emphasises Li. "And it is certain to provide a testbed for our ideas on cosmic-ray production and propagation near micro quasars for years to come."

Research Report: "Gamma-ray heartbeat powered by the microquasar"


Related Links
Deutsches Elektronen-Synchrotron DESY
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Separating gamma-ray bursts: Students make critical breakthrough
Copenhagen, Denmark (SPX) Jul 20, 2020
By applying a machine-learning algorithm, scientists at the Niels Bohr Institute, University of Copenhagen, have developed a method to classify all gamma-ray bursts (GRBs), rapid highly energetic explosions in distant galaxies, without needing to find an afterglow - by which GRBs are presently categorized. This breakthrough, initiated by first-year B.Sc. students, may prove key in finally discovering the origins of these mysterious bursts. The result is now published in Astrophysical Journal Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Moonstruck 'aroma sculptor' builds scent from space

Take Me to Mars

A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

STELLAR CHEMISTRY
NASA begins installing orion adapter for first Aartemis lunar flight

U.S. hypersonic weapon system completes second test on B-52 Stratofortress

Northrop Grumman completes first qualification test of new rocket motor for United Launch Alliance

Artemis I rocket moves closer to hot fire test

STELLAR CHEMISTRY
Ingenuity Mars Helicopter recharges its batteries in flight

NASA establishes Board to initially review Mars sample return plans

NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

STELLAR CHEMISTRY
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

STELLAR CHEMISTRY
Kleos to launch second satellite cluster on SpaceX Falcon 9

SIA urges FCC to ensure spectrum continues to provide satellite broadband connectivity

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

STELLAR CHEMISTRY
Return of the LIDAR

Altius Space Machines to support on-orbit servicing for the Dynetics Human Landing System

NASA selects SwRI to participate in $6B Rapid Spacecraft Acquisition IV Contract

PredaSAR chooses SpaceX to launch its first synthetic aperture radar satellite

STELLAR CHEMISTRY
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

NASA's planet hunter completes its primary mission

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

STELLAR CHEMISTRY
Huge ring-like structure on Ganymede's surface may have been caused by violent impact

Inside the ice giants of space

Shallow Lightning and Mushballs reveal ammonia to Juno scientists

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.