. 24/7 Space News .
STELLAR CHEMISTRY
Separating gamma-ray bursts: Students make critical breakthrough
by Staff Writers
Copenhagen, Denmark (SPX) Jul 20, 2020

illustration only

By applying a machine-learning algorithm, scientists at the Niels Bohr Institute, University of Copenhagen, have developed a method to classify all gamma-ray bursts (GRBs), rapid highly energetic explosions in distant galaxies, without needing to find an afterglow - by which GRBs are presently categorized. This breakthrough, initiated by first-year B.Sc. students, may prove key in finally discovering the origins of these mysterious bursts. The result is now published in Astrophysical Journal Letters.

Ever since gamma-ray bursts (GRBs) were accidentally picked up by Cold War satellites in the 70s, the origin of these rapid bursts have been a significant puzzle. Although many astronomers agree that GRBs can be divided into shorter (typically less than 1 second) and longer (up to a few minutes) bursts, the two groups are overlapping. It has been thought that longer bursts might be associated with the collapse of massive stars, while shorter bursts might instead be caused by the merger of neutron stars. However, without the ability to separate the two groups and pinpoint their properties, it has been impossible to test these ideas.

So far, it has only been possible to determine the type of a GRB about 1% of the time, when a telescope was able to point at the burst location quickly enough to pick up residual light, called an afterglow. This has been such a crucial step that astronomers have developed worldwide networks capable of interrupting other work and repointing large telescopes within minutes of the discovery of a new burst. One GRB was even detected by the LIGO Observatory using gravitational waves, for which the team was awarded the 2017 Nobel Prize.

Breakthrough achieved using machine-learning algorithm
Now, scientists at the Niels Bohr Institute have developed a method to classify all GRBs without needing to find an afterglow. The group, led by first-year B.Sc. Physics students Johann Bock Severin, Christian Kragh Jespersen and Jonas Vinther, applied a machine-learning algorithm to classify GRBs. They identified a clean separation between long and short GRB's. Their work, carried out under the supervision of Charles Steinhardt, will bring astronomers a step closer to understanding GRB's.

This breakthrough may prove the key to finally discovering the origins of these mysterious bursts. As Charles Steinhardt, Associate Professor at the Cosmic Dawn Center of the Niels Bohr Institute explains, "Now that we have two complete sets available, we can start exploring the differences between them. So far, there had not been a tool to do that."

From algorithm to visual map
Instead of using a limited set of summary statistics, as was typically done until then, the students decided to encode all available information on GRB's using the machine learning algorithm t-SNE. The t-distributed Stochastic neighborhood embedding algorithm takes complex high-dimensional data and produces a simplified and visually accessible map. It does so without interfering with the structure of the dataset. "The unique thing about this approach," explains Christian Kragh Jespersen, "is that t-SNE doesn't force there to be two groups. You let the data speak for itself and tell you how it should be classified."

Shining light on the data
The preparation of the feature space - the input you give the algorithm - was the most challenging part of the project, says Johann Bock Severin. Essentially, the students had to prepare the dataset in such a way that its most important features would stand out. "I like to compare it to hanging your data points from the ceiling in a dark room," explains Christian Kragh Jespersen. "Our main problem was to figure out from what direction we should shine light on the data to make the separations visible."

"Step 0 in understanding GRB's"
The students explored the t-SNE machine-learning algorithm as part of their 1st Year project, a 1st year course in the Bachelor of Physics. "By the time we got to the end of the course, it was clear we had quite a significant result", their supervisor Charles Steinhardt says. The students' mapping of the t-SNE cleanly divides all GRB's from the Swift observatory into two groups. Importantly, it classifies GRB's that previously were difficult to classify. "This essentially is step 0 in understanding GRB's," explains Steinhardt. "For the first time, we can confirm that shorter and longer GRB's are indeed completely separate things."

Without any prior theoretical background in astronomy, the students have discovered a key piece of the puzzle surrounding GRB's. From here, astronomers can start to develop models to identify the characteristics of these two separate classes.

Research paper


Related Links
University Of Copenhagen
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Astronomers spot most distant fleeting flash afterglow from SGRB
Washington DC (UPI) Jul 14, 2020
Astronomers said Tuesday they saw the most distant afterglow ever from a short gamma-ray burst 10 billion light years away. Short gamma-ray bursts emit huge amounts of energy in about one second, and most likely occur when two neutron stars merge, according to researchers. With only seven or eight SGRBs typically detected a year and fleeting flash afterglows lasting at most a few hours, a Northwestern University team was shocked to detect this new one, according to a study to be publishe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Astronauts add expertise, refine space station science in orbit

Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

NASA adds software experts to work toward new Boeing capsule flight

STELLAR CHEMISTRY
Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

NASA astronauts and Russian cosmonauts perform habitability test of Crew Dragon capsule

Rocket Lab promises customers to 'Leave No Stone Unturned' launch failure

STELLAR CHEMISTRY
UAE again delays Mars probe launch over weather

The quest to find signs of ancient life on Mars

Humanity on Mars? Technically possible, but no voyage on horizon

NASA's Perseverance rover will scour Mars for signs of life

STELLAR CHEMISTRY
Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

STELLAR CHEMISTRY
Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

Columbus gets a new European science rack

China launches new commercial telecommunication satellite

SpaceX delays launch of mini-satellites

STELLAR CHEMISTRY
Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

Liverpool researchers build robot scientist that has already discovered a new catalyst

Deutsche Bank teams up with Google in cloud services

STELLAR CHEMISTRY
Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

NASA Awards SETI Institute Contract for Planetary Protection Support

Supercomputer reveals atmospheric impact of gigantic planetary collisions

STELLAR CHEMISTRY
The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.