. 24/7 Space News .
EXO WORLDS
Surprisingly dense exoplanet challenges planet formation theories
by Staff Writers
Washington DC (SPX) Aug 07, 2020

stock illustration only

New detailed observations with NSF's NOIRLab facilities reveal a young exoplanet, orbiting a young star in the Hyades cluster, that is unusually dense for its size and age. Weighing in at 25 Earth-masses, and slightly smaller than Neptune, this exoplanet's existence is at odds with the predictions of leading planet formation theories.

New observations of the exoplanet, known as K2-25b, made with the WIYN 0.9-meter Telescope at Kitt Peak National Observatory (KPNO), a Program of NSF's NOIRLab, the Hobby-Eberly Telescope at McDonald Observatory and other facilities, raise new questions about current theories of planet formation. The exoplanet has been found to be unusually dense for its size and age - raising the question of how it came to exist. Details of the findings appear in The Astronomical Journal.

Slightly smaller than Neptune, K2-25b orbits an M-dwarf star - the most common type of star in the galaxy - in 3.5 days. The planetary system is a member of the Hyades star cluster, a nearby cluster of young stars in the direction of the constellation Taurus. The system is approximately 600 million years old, and is located about 150 light-years from Earth.

Planets with sizes between those of Earth and Neptune are common companions to stars in the Milky Way, despite the fact that no such planets are found in our Solar System. Understanding how these "sub-Neptune" planets form and evolve is a frontier question in studies of exoplanets.

Astronomers predict that giant planets form by first assembling a modest rock-ice core of 5-10 times the mass of Earth and then enrobing themselves in a massive gaseous envelope hundreds of times the mass of Earth. The result is a gas giant like Jupiter. K2-25b breaks all the rules of this conventional picture: with a mass 25 times that of Earth and modest in size, K2-25b is nearly all core and very little gaseous envelope. These strange properties pose two puzzles for astronomers. First, how did K2-25b assemble such a large core, many times the 5-10 Earth-mass limit predicted by theory? And second, with its high core mass - and consequent strong gravitational pull - how did it avoid accumulating a significant gaseous envelope?

The team studying K2-25b found the result surprising. "K2-25b is unusual," said Gudmundur Stefansson, a postdoctoral fellow at Princeton University, who led the research team. According to Stefansson, the exoplanet is smaller in size than Neptune but about 1.5 times more massive. "The planet is dense for its size and age, in contrast to other young, sub-Neptune-sized planets that orbit close to their host star," said Stefansson. "Usually these worlds are observed to have low densities - and some even have extended evaporating atmospheres. K2-25b, with the measurements in hand, seems to have a dense core, either rocky or water-rich, with a thin envelope."

To explore the nature and origin of K2-25b, astronomers determined its mass and density. Although the exoplanet's size was initially measured with NASA's Kepler satellite, the size measurement was refined using high-precision measurements from the WIYN 0.9-meter Telescope at KPNO and the 3.5-meter telescope at Apache Point Observatory (APO) in New Mexico. The observations made with these two telescopes took advantage of a simple but effective technique that was developed as part of Stefansson's doctoral thesis.

The technique uses a clever optical component called an Engineered Diffuser, which can be obtained off the shelf for around $500. It spreads out the light from the star to cover more pixels on the camera, allowing the brightness of the star during the planet's transit to be more accurately measured, and resulting in a higher-precision measurement of the size of the orbiting planet, among other parameters.

"The innovative diffuser allowed us to better define the shape of the transit and thereby further constrain the size, density and composition of the planet," said Jayadev Rajagopal, an astronomer at NOIRLab who was also involved in the study.

For its low cost, the diffuser delivers an outsized scientific return. "Smaller aperture telescopes, when equipped with state-of-the-art, but inexpensive, equipment can be platforms for high impact science programs," explains Rajagopal. "Very accurate photometry will be in demand for exploring host stars and planets in tandem with space missions and larger apertures from the ground, and this is an illustration of the role that a modest-sized 0.9-meter telescope can play in that effort."

Thanks to the observations with the diffusers available on the WIYN 0.9-meter and APO 3.5-meter telescopes, astronomers are now able to predict with greater precision when K2-25b will transit its host star. Whereas before transits could only be predicted with a timing precision of 30-40 minutes, they are now known with a precision of 20 seconds. The improvement is critical to planning follow-up observations with facilities such as the international Gemini Observatory and the James Webb Space Telescope.

Many of the authors of this study are also involved in another exoplanet-hunting project at KPNO: the NEID spectrometer on the WIYN 3.5-meter Telescope. NEID enables astronomers to measure the motion of nearby stars with extreme precision - roughly three times better than the previous generation of state-of-the-art instruments - allowing them to detect, determine the mass of, and characterize exoplanets as small as Earth.

Research paper


Related Links
Association Of Universities For Research In Astronomy (AURA)
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Exoplanet rediscovery is step toward finding habitable planets
Warwick UK (SPX) Jul 23, 2020
The rediscovery of a lost planet could pave the way for the detection of a world within the habitable 'Goldilocks zone' in a distant solar system. The planet, the size and mass of Saturn with an orbit of thirty-five days, is among hundreds of 'lost' worlds that University of Warwick astronomers are pioneering a new method to track down and characterise in the hope of finding cooler planets like those in our solar system, and even potentially habitable planets. Reported in Astrophysical Journ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Take Me to Mars

EXO WORLDS
Russia wants to return to Venus, build reusable rocket

SpaceX completes test flight of Mars rocket prototype

SpaceX launched 10th Starlink batch

Spaceflight and Benchmark sign green propulsion deal for Sherpa launcher

EXO WORLDS
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

EXO WORLDS
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

EXO WORLDS
Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

EXO WORLDS
Scientists find way to track space junk in daylight

At Aerospace: How Internships Went Virtual

First laser detection of space debris in daylight

Transforming e-waste into a strong, protective coating for metal

EXO WORLDS
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

EXO WORLDS
Ammonia sparks unexpected, exotic lightning on Jupiter

Shallow Lightning and Mushballs reveal ammonia to Juno scientists

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.