24/7 Space News
Small stars may host bigger planets than previously thought
illustration only
Small stars may host bigger planets than previously thought
by Staff Writers
London, UK (SPX) Mar 27, 2023

Stars with less than half the mass of our Sun are able to host giant Jupiter-style planets, in conflict with the most widely accepted theory of how such planets form, according to a new study led by UCL and University of Warwick researchers.

Gas giants, like other planets, form from disks of material surrounding young stars. According to core accretion theory, they first form a core of rock, ice and other heavy solids, attracting an outer layer of gas once this core is sufficiently massive (about 15 to 20 times that of Earth).

However, low-mass stars have low-mass disks that, models predict, would not provide enough material to form a gas giant in this way, or at least not quickly enough before the disk breaks up.

In the study, accepted for publication in the Monthly Notices of the Royal Astronomical Society (MNRAS) and funded by the UK Science and Technology Facilities Council (STFC), researchers looked at 91,306 low-mass stars, using observations from NASA's Transiting Exoplanet Survey Satellite (TESS), and in 15 cases found dips in the brightness of the light corresponding to a gas giant passing in front of the star.

Five out of the 15 potential giant planets have since been confirmed as planets using independent methods. One of these confirmed planets orbits a star that is a fifth of the mass of the Sun - which would not be possible according to planet formation models.

Lead author Dr Ed Bryant (Mullard Space Science Laboratory at UCL, formerly the University of Warwick), who initiated the work as part of his PhD, said: "Low-mass stars are better at forming giant planets than we thought. Our results raise serious questions for planet formation models. In particular, our detection of gas giants orbiting stars as low as 20% of the mass of the Sun poses a conflict with current theory."

Co-author Dr Vincent Van Eylen (Mullard Space Science Laboratory at UCL): "The fact that, although rare, gas giants do exist around low-mass stars is an unexpected finding and means that models of planet formation will need to be revised."

One possible interpretation is that gas giants do not form through core accretion but through gravitational instability, where the disk surrounding a star fragments into planet-sized clumps of dust and gas. If this is the case, low-mass stars could host very large gas giants, two or three times the mass of Jupiter. However, this is considered unlikely, as the disks around low-mass stars do not appear to be massive enough to fragment in this way.

Another explanation, the researchers say, is that astronomers have underestimated how massive a star's disk can be, meaning small stars could form giant planets via core accretion after all.

This could either be because we have incorrectly calculated the mass of disks we can observe through telescopes, or because disks have a greater mass at the start of a star's life, when they are very challenging to observe (as they are embedded in clouds of dust), compared to later in a star's life when we can observe them.

Co-author Dr Dan Bayliss (University of Warwick) said: "It's possible we don't understand the masses of these protoplanetary disks as well as we thought we did. Powerful new instruments such as the James Webb Space Telescope will be able to study the properties of these disks in more detail."

In their paper, the researchers sought to identify how often giant planets occurred around low-mass stars, testing if this occurrence rate fit with what core accretion models would predict.

They used an algorithm to identify the signals of transiting gas giants in the light emitted by low-mass stars. They then vetted these signals, discounting a number of false positives.

To determine how likely their method was to detect actual gas giants orbiting these stars, they inserted simulations of thousands of signals of transiting planets in the actual TESS starlight data, and then ran their algorithm to see how many of these planets would be detected.

Now the researchers are working to confirm as planets (or rule out) nine out of the 15 candidate planets they identified (five have so far been confirmed as planets, with one false positive). These candidates could potentially be companion stars or there could be another reason for the dips in brightness. The team will infer these objects' masses by looking for a "wobble" in their host star's position, indicating the possible planet's gravitational tug. This wobble can be detected via spectroscopic analysis of the starlight - measuring different bands of light to track the star's movement either away from us or towards us.

Research Report:The occurrence rate of giant planets orbiting low-mass stars with TESS

Related Links
University College London
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Webb Telescope spots swirling, gritty clouds on remote planet in spectrum data
Baltimore MD (SPX) Mar 23, 2023
Researchers observing with NASA's James Webb Space Telescope have pinpointed silicate cloud features in a distant planet's atmosphere. The atmosphere is constantly rising, mixing, and moving during its 22-hour day, bringing hotter material up and pushing colder material down. The resulting brightness changes are so dramatic that it is the most variable planetary-mass object known to date. The team, led by Brittany Miles of the University of Arizona, also made extraordinarily clear detections of water, m ... read more

NASA, Boeing aiming for July launch of Starliner space capsule

THE NEW GUYS: The Historic Class of Astronauts that Changed the Face of Space Travel

Russia's only female cosmonaut praises ISS mission

Virgin Orbit suspends operations, in wake of failed orbital launch

Firefly Aerospace completes risk reduction testing for critical Miranda engine

NASA rocket engines re-engineered as production restarts

Certified and Ready for Rocket-Powered Flight

Leaky Russian space capsule lands safely in Kazakhstan

Sols 3780-3782: Perfect 10

A Picture Perfect Day - Or To Be More Exact, a Day Perfect for Taking Pictures Sols 3783-3784

Flight 49 Preview - By the Numbers

Journey to Tenby!

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

Satellite firm SES says exploring merger with Intelsat

SpaceX sends 56 Starlink satellites into low-Earth orbit

Proba-3 complete: Formation-flying satellites fully integrated

Constellations of opportunities

WVU researchers explore alternative sources to help power space

Geo eye spy: first Eurostar Neo selfie from Eutelsat's HOTBIRD 13F satellite

Concrete in Disrepair? DARPA May Help You BRACE It

New mining technology uses CO2 as tool to access critical minerals

New paper investigates exoplanet climates

Small stars may host bigger planets than previously thought

JWST confirms giant planet atmospheres vary widely

Planet hunting and the origins of life

Hubble monitors changing weather and seasons at Jupiter and Uranus

Sabotaging Juice

Redness of Neptunian asteroids sheds light on early Solar System

An explaination for unusual radar signatures in the outer solar system

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.