24/7 Space News
New mining technology uses CO2 as tool to access critical minerals
illustration only
New mining technology uses CO2 as tool to access critical minerals
by Staff Writers
Austin TX (SPX) Mar 27, 2023

A mining technology pioneered by researchers at the Bureau of Economic Geology at The University of Texas at Austin could reduce the amount of energy needed to access critical minerals vital for modern energy technologies and capture greenhouse gases along the way.

Transitioning the world's energy to technologies and sources with low-carbon emissions will take, in part, tremendous amounts of lithium, nickel, cobalt and other critical minerals that exist in low concentrations in the Earth's crust. Mining those elements takes much energy and produces waste, which can negatively affect the environment and create significant amounts of greenhouse gas emissions such as carbon dioxide (CO2).

This research could turn these emissions into a tool by using CO2 to weaken the rock containing critical minerals, reducing the amount of energy needed for mining. The ultimate goal is to significantly reduce the emissions produced during mining by storing them safely in the rocks, and potentially even make mining carbon negative - storing more carbon than is produced - by piping in and storing CO2 emissions from other industrial operations.

This CO2 storage is possible because of the way ultramafic rocks, which typically contain critical minerals, react with carbon. The CO2 chemically reacts with the rock to mechanically break its structure, making the minerals easier and less energy intensive to mine. This reaction also partially turns the rock into a limestone, incorporating the carbon dioxide into the mineral structure and storing it permanently.

"Mining processes create a lot of CO2 as a byproduct," said Estibalitz Ukar, a research scientist at the Bureau of Economic Geology at the UT Jackson School of Geosciences. "If you can capture what is produced at the mine, then you can come up with a low-emission operation, which is good, but we want to use the CO2-reducing properties of ultramafic rocks to help eliminate even more CO2."

Ukar is leading a team of scientists that is working to perfect the mining technology, which is supported by a $5 million grant from the U.S. Department of Energy Advanced Research Projects Agency-Energy. The three-year project will work to refine the mining method in the lab for two years before trying a full-scale field test in partnership with Canada Nickel Company. The field test is planned to take place in one of 20 newly discovered ore bodies near the U.S.-Canada border that are forecast to be an important new source of critical minerals in North America.

The project would also make low-grade deposits more economically viable, an important step in increasing the available supply of domestically produced critical minerals.

"The demand is high now, but we will see a huge increase in the next three to five years as we transition into lower-emission technologies, such as electric vehicles," Ukar said. "We need to meet the demand by finding creative ways to reduce costs and emissions, find new sources of metals, and make the mines of the future more sustainable. And we need to do it fast."

The project is part of the Mining Innovations for Negative Emissions Resource Recovery program, a new initiative that aims to develop market-ready technologies that will increase domestic supplies of critical elements required for the transition to low-carbon or carbon-free energy.

The research brings together the expertise of scientists from the Bureau of Economic Geology and Department of Geological Sciences in the UT Jackson School, as well as researchers from the UT departments of Petroleum and Geosystems Engineering and Aerospace Engineering and Engineering Mechanics; Columbia University; the University of Bern; and Carbfix, an Iceland-based project using a similar method to store CO2 in basalt.

Several groups from the Bureau of Economic Geology are a part of the project. These include the Gulf Coast Carbon Center, a world leader in monitoring carbon to make sure it is safely stored. Experts from the bureau's TexNet seismic monitoring system are also part of the team, and will help determine if the new mining method causes any seismic activity.

"Lowering the emissions from energy, in an affordable and reliable way so that the global population can afford it, is the great challenge," said Bureau of Economic Geology Director Scott Tinker. "This research program, if successful, could be one of several approaches to help advance that effort. The integrated team is critical to success."

In addition to the MINER support, Ukar has received a separate $1 million grant from the DOE's National Energy Technology Laboratory to find places within the U.S. where this new mining technology could be applied. If successful, the technology could be useful in mining operations globally.

Related Links
University of Texas at Austin
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
ESA in miniature
Paris (ESA) Mar 27, 2023
This is a version of the ESA logo like no other: seen through a microscope it measures just over 17 thousandths of a millimetre across, about half the diameter of the average human skin cell. The logo was carved out of a piece of nickel-based space-grade alloy Inconel using Xenon atoms shot from a plasma ion beam. While the logo measures 17.43 micrometres (thousandths of a millimetre) in length it is just 700 nanometres (millionths of a millimetre) deep. Click here for an angled view. ... read more

Russia's only female cosmonaut praises ISS mission

Virgin Orbit suspends operations, in wake of failed orbital launch

SpaceX cargo resupply mission CRS-27 scheduled for launch Tuesday

NASA SpaceX Crew-5 splashes down after 5-month mission

SpaceX launches 56 Starlink satellites from Florida

SpaceX launches its 20th mission of the year with launch of 56 Starlink satellites

Blue Origin hopes to resume space flights 'soon' after 2022 accident

First 3D-printed rocket lifts off but fails to reach orbit

The race is on for Ingenuity and Perseverance to stay the distance

Spring Past the Marker Band: Sols 3776-3777

Geologists Love a Good Contact: Sols 3773-3775

Waves and a Rock: Sols 3778-3779

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

Sidus Space to power maritime solutions with AIS integration in LizzieSat

Inmarsat and RBC Signals complete live testing of dynamic spectrum leasing solution

TDGA secures New Media Holding as lead investor in $20M seed round for Space Media

Dhruva and Kineis to offer satellite-based services

New mining technology uses CO2 as tool to access critical minerals

ESA in miniature

NRO awards contracts to BlackSky and Planet Labs for hyperspectral capabilities

Artist Karla Ortiz sees AI 'identity theft', not promise

Researchers detect silicate clouds, methane, water, carbon monoxide on distant planet

Searching for life with space dust

Webb Telescope spots swirling, gritty clouds on remote planet in spectrum data

Scientists have new tool to estimate how much water might be hidden beneath a planet's surface

An explaination for unusual radar signatures in the outer solar system

New Horizons team discusses discoveries from the Kuiper Belt

New Horizons team adds AI to Kuiper Belt Object search

Study finds ocean currents may affect rotation of Europa's icy crust

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.